FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks
- URL: http://arxiv.org/abs/2012.01065v1
- Date: Wed, 2 Dec 2020 10:12:49 GMT
- Title: FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks
- Authors: Weijie He, Xiaohao Mao, Chao Ma, Jos\'e Miguel Hern\'andez-Lobato,
Ting Chen
- Abstract summary: Self-diagnosis provides low-cost and accessible healthcare via an agent that queries the patient and makes predictions about possible diseases.
We propose a competitive framework, called FIT, which uses an information-theoretic reward to determine what data to collect next.
Our results in two simulated datasets show that FIT can effectively deal with large search space problems, outperforming existing baselines.
- Score: 10.687562550605739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic self-diagnosis provides low-cost and accessible healthcare via an
agent that queries the patient and makes predictions about possible diseases.
From a machine learning perspective, symptom-based self-diagnosis can be viewed
as a sequential feature selection and classification problem. Reinforcement
learning methods have shown good performance in this task but often suffer from
large search spaces and costly training. To address these problems, we propose
a competitive framework, called FIT, which uses an information-theoretic reward
to determine what data to collect next. FIT improves over previous
information-based approaches by using a multimodal variational autoencoder
(MVAE) model and a two-step sampling strategy for disease prediction.
Furthermore, we propose novel methods to substantially reduce the computational
cost of FIT to a level that is acceptable for practical online self-diagnosis.
Our results in two simulated datasets show that FIT can effectively deal with
large search space problems, outperforming existing baselines. Moreover, using
two medical datasets, we show that FIT is a competitive alternative in
real-world settings.
Related papers
- The Relevance Feature and Vector Machine for health applications [0.11538034264098687]
This paper presents a novel model that addresses the challenges of the fat-data problem when dealing with clinical prospective studies.
The model capabilities are tested against state-of-the-art models in several medical datasets with fat-data problems.
arXiv Detail & Related papers (2024-02-11T01:21:56Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
Deep learning-based disease diagnosis applications are essential for accurate diagnosis at various disease stages.
By positioning processing resources closer to the device, a distributed computing paradigm has the potential to revolutionize disease diagnosis.
This study proposes a federated-based approach for IoT data analytics systems to satisfy privacy and performance requirements.
arXiv Detail & Related papers (2023-08-27T06:31:43Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical
Systems [0.8379286663107844]
This paper proposes a scalable algorithm for an automated learning of a structured diagnosis model.
It offers equal performance to comparable algorithms while giving better interpretability.
arXiv Detail & Related papers (2021-04-02T11:14:05Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - A Data-Efficient Deep Learning Based Smartphone Application For
Detection Of Pulmonary Diseases Using Chest X-rays [0.0]
The app inputs Chest X-Ray images captured from the mobile camera which is then relayed to the AI architecture in a cloud platform.
Doctors with a smartphone can leverage the application to save the considerable time that standard COVID-19 tests take for preliminary diagnosis.
arXiv Detail & Related papers (2020-08-19T04:28:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.