論文の概要: Efficient DETR: Improving End-to-End Object Detector with Dense Prior
- arxiv url: http://arxiv.org/abs/2104.01318v1
- Date: Sat, 3 Apr 2021 06:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:40:23.769865
- Title: Efficient DETR: Improving End-to-End Object Detector with Dense Prior
- Title(参考訳): 効率的なDETR:Dense Priorによるエンドツーエンドオブジェクト検出器の改善
- Authors: Zhuyu Yao, Jiangbo Ai, Boxun Li, Chi Zhang
- Abstract要約: エンドツーエンドのオブジェクト検出のためのシンプルで効率的なパイプラインであるEfficient DETRを提案します。
密度検出とスパースセット検出の両方を利用することで、効率的なdetrはオブジェクトコンテナを初期化する前に密度を活用する。
MS COCOで行った実験により,3つのエンコーダ層と1つのデコーダ層しか持たない手法が,最先端のオブジェクト検出手法と競合する性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 7.348184873564071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently proposed end-to-end transformer detectors, such as DETR and
Deformable DETR, have a cascade structure of stacking 6 decoder layers to
update object queries iteratively, without which their performance degrades
seriously. In this paper, we investigate that the random initialization of
object containers, which include object queries and reference points, is mainly
responsible for the requirement of multiple iterations. Based on our findings,
we propose Efficient DETR, a simple and efficient pipeline for end-to-end
object detection. By taking advantage of both dense detection and sparse set
detection, Efficient DETR leverages dense prior to initialize the object
containers and brings the gap of the 1-decoder structure and 6-decoder
structure. Experiments conducted on MS COCO show that our method, with only 3
encoder layers and 1 decoder layer, achieves competitive performance with
state-of-the-art object detection methods. Efficient DETR is also robust in
crowded scenes. It outperforms modern detectors on CrowdHuman dataset by a
large margin.
- Abstract(参考訳): DETRやDeformable DETRのような最近提案されたエンドツーエンドのトランスフォーマー検出器は、6つのデコーダ層を積み重ねてオブジェクトクエリを反復的に更新するカスケード構造を持つ。
本稿では、オブジェクトクエリや参照ポイントを含むオブジェクトコンテナのランダム初期化が、主に複数のイテレーションの要求に対するものであることを示す。
そこで本研究では,エンドツーエンドオブジェクト検出のための簡易かつ効率的なパイプラインであるEfficient DETRを提案する。
密度検出とスパースセット検出の両方を利用することで、効率的なdetrはオブジェクトコンテナの初期化の前に密度を活用し、1デコーダ構造と6デコーダ構造のギャップをもたらす。
MS COCOで行った実験により,3つのエンコーダ層と1つのデコーダ層しか持たない手法が,最先端のオブジェクト検出手法と競合する性能を発揮することが示された。
効率的なDETRは、混雑したシーンでも堅牢である。
これは、CrowdHumanデータセット上の現代の検出器を大きなマージンで上回る。
関連論文リスト
- V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - Learning Remote Sensing Object Detection with Single Point Supervision [17.12725535531483]
Pointly Supervised Object Detection (PSOD) は、ボックスレベルの監視対象検出と比較してラベリングコストが低いため、かなりの関心を集めている。
本研究では,RS画像に適したPSOD法を提案する。
提案手法は,最先端の画像レベルとポイントレベルの教師付き検出法と比較して性能が大幅に向上し,PSODとボックスレベルの教師付きオブジェクト検出の差を低減できる。
論文 参考訳(メタデータ) (2023-05-23T15:06:04Z) - Pair DETR: Contrastive Learning Speeds Up DETR Training [0.6491645162078056]
本稿では、DreTRの主な問題である緩やかな収束に対処するための簡単なアプローチを提案する。
2つのデコーダを用いて、一対のキーポイント、左上隅、中央としてオブジェクト境界ボックスを検出する。
実験により、Pair DETRは元のDETRより少なくとも10倍早く収束し、トレーニング中にConditional DETRより1.5倍速く収束できることが示された。
論文 参考訳(メタデータ) (2022-10-29T03:02:49Z) - A Tri-Layer Plugin to Improve Occluded Detection [100.99802831241583]
本研究では,2段階物体検出装置の頭部検出のための単純な''モジュールを提案し,部分閉塞物体のリコールを改善する。
モジュールは、ターゲットオブジェクト、オクルーダー、オクラデーのセグメンテーションマスクの三層を予測し、それによってターゲットオブジェクトのマスクをより正確に予測することができる。
また,COCO評価データセットを構築し,部分閉塞オブジェクトと分離オブジェクトのリコール性能を測定した。
論文 参考訳(メタデータ) (2022-10-18T17:59:51Z) - ComplETR: Reducing the cost of annotations for object detection in dense
scenes with vision transformers [73.29057814695459]
ComplETRは、部分的にアノテートされた高密度なシーンデータセットで欠落したアノテーションを明示的に補完するように設計されている。
これにより、シーン内のすべてのオブジェクトインスタンスに注釈を付ける必要がなくなり、アノテーションのコストが削減される。
本稿では, 高速R-CNN, カスケードR-CNN, CenterNet2, Deformable DETRなどの人気検出器の性能向上を示す。
論文 参考訳(メタデータ) (2022-09-13T00:11:16Z) - Oriented Object Detection with Transformer [51.634913687632604]
我々は,エンドツーエンドネットワークに基づくTRansformer(bf O2DETR$)によるオブジェクト指向オブジェクト検出を実装した。
注意機構を奥行き分離可能な畳み込みに置き換えることで,トランスフォーマーの簡易かつ高効率なエンコーダを設計する。
私たちの$rm O2DETR$は、オブジェクト指向オブジェクト検出の分野における別の新しいベンチマークになり、より高速なR-CNNとRetinaNetに対して最大3.85mAPの改善が達成されます。
論文 参考訳(メタデータ) (2021-06-06T14:57:17Z) - UP-DETR: Unsupervised Pre-training for Object Detection with
Transformers [11.251593386108189]
教師なし事前学習型DETR(UP-DETR)におけるランダムクエリパッチ検出という新しいプレテキストタスクを提案する。
具体的には、与えられた画像からパッチをランダムに取り出し、デコーダにクエリとして与えます。
UP-DETRは、より高速な収束とオブジェクト検出、ワンショット検出、パノプティックセグメンテーションにおける平均精度でDETRの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-18T05:16:11Z) - End-to-End Object Detection with Transformers [88.06357745922716]
本稿では,オブジェクト検出を直接セット予測問題とみなす新しい手法を提案する。
我々のアプローチは検出パイプラインを合理化し、手作業で設計された多くのコンポーネントの必要性を効果的に除去する。
この新しいフレームワークの主な構成要素は、Detection TRansformerまたはDETRと呼ばれ、セットベースのグローバルな損失である。
論文 参考訳(メタデータ) (2020-05-26T17:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。