論文の概要: Pair DETR: Contrastive Learning Speeds Up DETR Training
- arxiv url: http://arxiv.org/abs/2210.16476v1
- Date: Sat, 29 Oct 2022 03:02:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 17:28:09.527221
- Title: Pair DETR: Contrastive Learning Speeds Up DETR Training
- Title(参考訳): Pair DETR: 対照的な学習がDETRトレーニングを高速化
- Authors: Mehdi Iranmanesh, Xiaotong Chen, Kuo-Chin Lien
- Abstract要約: 本稿では、DreTRの主な問題である緩やかな収束に対処するための簡単なアプローチを提案する。
2つのデコーダを用いて、一対のキーポイント、左上隅、中央としてオブジェクト境界ボックスを検出する。
実験により、Pair DETRは元のDETRより少なくとも10倍早く収束し、トレーニング中にConditional DETRより1.5倍速く収束できることが示された。
- 参考スコア(独自算出の注目度): 0.6491645162078056
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The DETR object detection approach applies the transformer encoder and
decoder architecture to detect objects and achieves promising performance. In
this paper, we present a simple approach to address the main problem of DETR,
the slow convergence, by using representation learning technique. In this
approach, we detect an object bounding box as a pair of keypoints, the top-left
corner and the center, using two decoders. By detecting objects as paired
keypoints, the model builds up a joint classification and pair association on
the output queries from two decoders. For the pair association we propose
utilizing contrastive self-supervised learning algorithm without requiring
specialized architecture. Experimental results on MS COCO dataset show that
Pair DETR can converge at least 10x faster than original DETR and 1.5x faster
than Conditional DETR during training, while having consistently higher Average
Precision scores.
- Abstract(参考訳): DETRオブジェクト検出アプローチでは、トランスフォーマーエンコーダとデコーダアーキテクチャを用いてオブジェクトを検出し、有望な性能を達成する。
本稿では,表現学習手法を用いて,detrの主な問題である遅い収束問題に対処するための簡単な手法を提案する。
提案手法では,2つのデコーダを用いて,一対のキーポイント,左上隅,中央としてオブジェクト境界ボックスを検出する。
オブジェクトをペアのキーポイントとして検出することにより、モデルは2つのデコーダからの出力クエリに共同分類とペア関連を構築する。
ペア・アソシエーションでは,特殊なアーキテクチャを必要としないコントラスト型自己教師学習アルゴリズムを提案する。
MS COCOデータセットによる実験結果から,Pair DETRはトレーニング中の条件付きDETRよりも少なくとも10倍,1.5倍の速度で収束できることがわかった。
関連論文リスト
- Decoupled DETR: Spatially Disentangling Localization and Classification
for Improved End-to-End Object Detection [48.429555904690595]
本稿では,タスク認識型問合せ生成モジュールと切り離された特徴学習プロセスを含む空間的に分離されたDETRを紹介する。
提案手法は,従来の研究に比べてMSCOCOデータセットの大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2023-10-24T15:54:11Z) - Semi-DETR: Semi-Supervised Object Detection with Detection Transformers [105.45018934087076]
半教師付き物体検出(SSOD)におけるDETRに基づくフレームワークの解析
本報告では,第1次変圧器を用いたエンド・ツー・エンド半教師対象検出器であるSemi-DETRについて述べる。
我々の手法は、最先端の手法をクリアマージンで上回る。
論文 参考訳(メタデータ) (2023-07-16T16:32:14Z) - Semantic-Aligned Matching for Enhanced DETR Convergence and Multi-Scale
Feature Fusion [95.7732308775325]
提案したDetection TRansformer (DETR) は、オブジェクト検出のための完全なエンドツーエンドパラダイムを確立している。
DETRは遅いトレーニング収束に悩まされており、様々な検出タスクの適用性を妨げている。
我々は,DETRの収束を加速し,検出性能を向上させるためにセマンティック・アラインド・マッチDreTR++を設計する。
論文 参考訳(メタデータ) (2022-07-28T15:34:29Z) - Accelerating DETR Convergence via Semantic-Aligned Matching [50.3633635846255]
本稿では,DTRの精度を犠牲にすることなく,DTRの収束を大幅に加速するセマンティック整合DTRであるSAM-DETRを提案する。
意味整合性マッチングにおいて最も識別性の高い特徴を持つ有能な点を明示的に検索し、収束をさらに高速化し、検出精度も向上する。
論文 参考訳(メタデータ) (2022-03-14T06:50:51Z) - Sparse DETR: Efficient End-to-End Object Detection with Learnable
Sparsity [10.098578160958946]
我々は,COCOデータセット上に10%エンコーダトークンしか持たなくても,Sparse DETRがDeformable DETRよりも優れた性能を実現することを示す。
エンコーダトークンだけがスペーサー化され、総計算コストは38%減少し、フレーム/秒(FPS)はDeformable DETRに比べて42%増加する。
論文 参考訳(メタデータ) (2021-11-29T05:22:46Z) - Efficient DETR: Improving End-to-End Object Detector with Dense Prior [7.348184873564071]
エンドツーエンドのオブジェクト検出のためのシンプルで効率的なパイプラインであるEfficient DETRを提案します。
密度検出とスパースセット検出の両方を利用することで、効率的なdetrはオブジェクトコンテナを初期化する前に密度を活用する。
MS COCOで行った実験により,3つのエンコーダ層と1つのデコーダ層しか持たない手法が,最先端のオブジェクト検出手法と競合する性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-04-03T06:14:24Z) - UP-DETR: Unsupervised Pre-training for Object Detection with
Transformers [11.251593386108189]
教師なし事前学習型DETR(UP-DETR)におけるランダムクエリパッチ検出という新しいプレテキストタスクを提案する。
具体的には、与えられた画像からパッチをランダムに取り出し、デコーダにクエリとして与えます。
UP-DETRは、より高速な収束とオブジェクト検出、ワンショット検出、パノプティックセグメンテーションにおける平均精度でDETRの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-18T05:16:11Z) - End-to-End Object Detection with Transformers [88.06357745922716]
本稿では,オブジェクト検出を直接セット予測問題とみなす新しい手法を提案する。
我々のアプローチは検出パイプラインを合理化し、手作業で設計された多くのコンポーネントの必要性を効果的に除去する。
この新しいフレームワークの主な構成要素は、Detection TRansformerまたはDETRと呼ばれ、セットベースのグローバルな損失である。
論文 参考訳(メタデータ) (2020-05-26T17:06:38Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。