Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing
- URL: http://arxiv.org/abs/2104.01375v1
- Date: Sat, 3 Apr 2021 11:13:14 GMT
- Title: Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing
- Authors: Ioannis Kakogeorgiou and Konstantinos Karantzalos
- Abstract summary: We develop deep learning models with state-of-the-art performance in benchmark datasets.
Ten XAI methods were employed towards understanding and interpreting models' predictions.
Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although deep neural networks hold the state-of-the-art in several remote
sensing tasks, their black-box operation hinders the understanding of their
decisions, concealing any bias and other shortcomings in datasets and model
performance. To this end, we have applied explainable artificial intelligence
(XAI) methods in remote sensing multi-label classification tasks towards
producing human-interpretable explanations and improve transparency. In
particular, we developed deep learning models with state-of-the-art performance
in the benchmark BigEarthNet and SEN12MS datasets. Ten XAI methods were
employed towards understanding and interpreting models' predictions, along with
quantitative metrics to assess and compare their performance. Numerous
experiments were performed to assess the overall performance of XAI methods for
straightforward prediction cases, competing multiple labels, as well as
misclassification cases. According to our findings, Occlusion, Grad-CAM and
Lime were the most interpretable and reliable XAI methods. However, none
delivers high-resolution outputs, while apart from Grad-CAM, both Lime and
Occlusion are computationally expensive. We also highlight different aspects of
XAI performance and elaborate with insights on black-box decisions in order to
improve transparency, understand their behavior and reveal, as well, datasets'
particularities.
Related papers
- Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
We evaluate current XAI methods by scoring them based on ground truth simulations and sensitivity analysis.
We show the differences between XAI methods in their ability to correctly predict the true sensitivity of the modeled industrial process.
arXiv Detail & Related papers (2024-07-12T09:46:26Z) - Solving the enigma: Deriving optimal explanations of deep networks [3.9584068556746246]
We propose a novel framework designed to enhance the explainability of deep networks.
Our framework integrates various explanations from established XAI methods and employs a non-explanation to construct an optimal explanation.
Our results suggest that optimal explanations based on specific criteria are derivable.
arXiv Detail & Related papers (2024-05-16T11:49:08Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Extending CAM-based XAI methods for Remote Sensing Imagery Segmentation [7.735470452949379]
We introduce a new XAI evaluation methodology and metric based on "Entropy" to measure the model uncertainty.
We show that using Entropy to monitor the model uncertainty in segmenting the pixels within the target class is more suitable.
arXiv Detail & Related papers (2023-10-03T07:01:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - An Experimental Investigation into the Evaluation of Explainability
Methods [60.54170260771932]
This work compares 14 different metrics when applied to nine state-of-the-art XAI methods and three dummy methods (e.g., random saliency maps) used as references.
Experimental results show which of these metrics produces highly correlated results, indicating potential redundancy.
arXiv Detail & Related papers (2023-05-25T08:07:07Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models.
arXiv Detail & Related papers (2023-03-21T14:24:58Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
We propose end-to-end pipelines composed of multiple interpretable models co-optimized by means of evolutionary algorithms.
We test our approach in reinforcement learning environments from the Atari benchmark.
arXiv Detail & Related papers (2022-02-10T10:33:44Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI [12.680653816836541]
We propose a ground truth based evaluation framework for XAI methods based on the CLEVR visual question answering task.
Our framework provides a (1) selective, (2) controlled and (3) realistic testbed for the evaluation of neural network explanations.
arXiv Detail & Related papers (2020-03-16T14:43:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.