Solving the enigma: Deriving optimal explanations of deep networks
- URL: http://arxiv.org/abs/2405.10008v1
- Date: Thu, 16 May 2024 11:49:08 GMT
- Title: Solving the enigma: Deriving optimal explanations of deep networks
- Authors: Michail Mamalakis, Antonios Mamalakis, Ingrid Agartz, Lynn Egeland Mørch-Johnsen, Graham Murray, John Suckling, Pietro Lio,
- Abstract summary: We propose a novel framework designed to enhance the explainability of deep networks.
Our framework integrates various explanations from established XAI methods and employs a non-explanation to construct an optimal explanation.
Our results suggest that optimal explanations based on specific criteria are derivable.
- Score: 3.9584068556746246
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The accelerated progress of artificial intelligence (AI) has popularized deep learning models across domains, yet their inherent opacity poses challenges, notably in critical fields like healthcare, medicine and the geosciences. Explainable AI (XAI) has emerged to shed light on these "black box" models, helping decipher their decision making process. Nevertheless, different XAI methods yield highly different explanations. This inter-method variability increases uncertainty and lowers trust in deep networks' predictions. In this study, for the first time, we propose a novel framework designed to enhance the explainability of deep networks, by maximizing both the accuracy and the comprehensibility of the explanations. Our framework integrates various explanations from established XAI methods and employs a non-linear "explanation optimizer" to construct a unique and optimal explanation. Through experiments on multi-class and binary classification tasks in 2D object and 3D neuroscience imaging, we validate the efficacy of our approach. Our explanation optimizer achieved superior faithfulness scores, averaging 155% and 63% higher than the best performing XAI method in the 3D and 2D applications, respectively. Additionally, our approach yielded lower complexity, increasing comprehensibility. Our results suggest that optimal explanations based on specific criteria are derivable and address the issue of inter-method variability in the current XAI literature.
Related papers
- Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
Surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability.
gradient based explanations can be directly adopted for neural network models.
We introduce both human and quantitative evaluations to measure algorithm performance.
arXiv Detail & Related papers (2024-03-15T15:49:31Z) - XAI-TRIS: Non-linear image benchmarks to quantify false positive
post-hoc attribution of feature importance [1.3958169829527285]
A lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method.
This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies.
We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods.
arXiv Detail & Related papers (2023-06-22T11:31:11Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
Activation-maximization approaches are used to interpret and analyze trained deep-learning models.
In this work, we consider the concept of an adversary manipulating a model for the purpose of deceiving the interpretation.
arXiv Detail & Related papers (2023-06-12T19:54:33Z) - Towards Better Explanations for Object Detection [0.0]
This paper proposes a method to explain the decision for any object detection model called D-CLOSE.
We performed tests on the MS-COCO dataset with the YOLOX model, which shows that our method outperforms D-RISE.
arXiv Detail & Related papers (2023-06-05T09:52:05Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - INTERACTION: A Generative XAI Framework for Natural Language Inference
Explanations [58.062003028768636]
Current XAI approaches only focus on delivering a single explanation.
This paper proposes a generative XAI framework, INTERACTION (explaIn aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder)
Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation.
arXiv Detail & Related papers (2022-09-02T13:52:39Z) - Quality Diversity Evolutionary Learning of Decision Trees [4.447467536572625]
We show that MAP-Elites can diversify hybrid models over a feature space that captures both the model complexity and its behavioral variability.
We apply our method on two well-known control problems from the OpenAI Gym library, on which we discuss the "illumination" patterns projected by MAP-Elites.
arXiv Detail & Related papers (2022-08-17T13:57:32Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Evaluating Explainable Artificial Intelligence Methods for Multi-label
Deep Learning Classification Tasks in Remote Sensing [0.0]
We develop deep learning models with state-of-the-art performance in benchmark datasets.
Ten XAI methods were employed towards understanding and interpreting models' predictions.
Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods.
arXiv Detail & Related papers (2021-04-03T11:13:14Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.