Property-driven Training: All You (N)Ever Wanted to Know About
- URL: http://arxiv.org/abs/2104.01396v1
- Date: Sat, 3 Apr 2021 13:06:06 GMT
- Title: Property-driven Training: All You (N)Ever Wanted to Know About
- Authors: Marco Casadio, Matthew Daggitt, Ekaterina Komendantskaya, Wen Kokke,
Daniel Kienitz, Rob Stewart
- Abstract summary: Neural networks are known for their ability to detect general patterns in noisy data.
This makes them a popular tool for perception components in complex AI systems.
adversarial training, data-augmentation and Lipschitz robustness training have been proposed as means of improving their robustness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are known for their ability to detect general patterns in
noisy data. This makes them a popular tool for perception components in complex
AI systems. Paradoxically, they are also known for being vulnerable to
adversarial attacks. In response, various methods such as adversarial training,
data-augmentation and Lipschitz robustness training have been proposed as means
of improving their robustness. However, as this paper explores, these training
methods each optimise for a different definition of robustness. We perform an
in-depth comparison of these different definitions, including their
relationship, assumptions, interpretability and verifiability after training.
We also look at constraint-driven training, a general approach designed to
encode arbitrary constraints, and show that not all of these definitions are
directly encodable. Finally we perform experiments to compare the applicability
and efficacy of the training methods at ensuring the network obeys these
different definitions. These results highlight that even the encoding of such a
simple piece of knowledge such as robustness in neural network training is
fraught with difficult choices and pitfalls.
Related papers
- Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
We provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory.
We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning.
arXiv Detail & Related papers (2024-10-11T03:59:49Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
Two-player zero-sum paradigm of adversarial training has not engendered sufficient levels of robustness.
We show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on robustness.
A novel non-zero-sum bilevel formulation of adversarial training yields a framework that matches and in some cases outperforms state-of-the-art attacks.
arXiv Detail & Related papers (2023-06-19T16:00:48Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Adversarial Coreset Selection for Efficient Robust Training [11.510009152620666]
We show how selecting a small subset of training data provides a principled approach to reducing the time complexity of robust training.
We conduct extensive experiments to demonstrate that our approach speeds up adversarial training by 2-3 times.
arXiv Detail & Related papers (2022-09-13T07:37:53Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Evaluating Membership Inference Through Adversarial Robustness [6.983991370116041]
We propose an enhanced methodology for membership inference attacks based on adversarial robustness.
We evaluate our proposed method on three datasets: Fashion-MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2022-05-14T06:48:47Z) - Exploring Memorization in Adversarial Training [58.38336773082818]
We investigate the memorization effect in adversarial training (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting.
We propose a new mitigation algorithm motivated by detailed memorization analyses.
arXiv Detail & Related papers (2021-06-03T05:39:57Z) - How benign is benign overfitting? [96.07549886487526]
We investigate two causes for adversarial vulnerability in deep neural networks: bad data and (poorly) trained models.
Deep neural networks essentially achieve zero training error, even in the presence of label noise.
We identify label noise as one of the causes for adversarial vulnerability.
arXiv Detail & Related papers (2020-07-08T11:07:10Z) - HYDRA: Pruning Adversarially Robust Neural Networks [58.061681100058316]
Deep learning faces two key challenges: lack of robustness against adversarial attacks and large neural network size.
We propose to make pruning techniques aware of the robust training objective and let the training objective guide the search for which connections to prune.
We demonstrate that our approach, titled HYDRA, achieves compressed networks with state-of-the-art benign and robust accuracy, simultaneously.
arXiv Detail & Related papers (2020-02-24T19:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.