Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization
- URL: http://arxiv.org/abs/2104.01482v1
- Date: Sat, 3 Apr 2021 20:57:57 GMT
- Title: Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization
- Authors: Edgar A. Bernal
- Abstract summary: We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
- Score: 13.985534521589257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative frameworks including GANs and normalizing flow models have
proven successful at filling in missing values in partially observed data
samples by effectively learning -- either explicitly or implicitly -- complex,
high-dimensional statistical distributions. In tasks where the data available
for learning is only partially observed, however, their performance decays
monotonically as a function of the data missingness rate. In high missing data
rate regimes (e.g., 60% and above), it has been observed that state-of-the-art
models tend to break down and produce unrealistic and/or semantically
inaccurate data. We propose a novel framework to facilitate the learning of
data distributions in high paucity scenarios that is inspired by traditional
formulations of solutions to ill-posed problems. The proposed framework
naturally stems from posing the process of learning from incomplete data as a
joint optimization task of the parameters of the model being learned and the
missing data values. The method involves enforcing a prior regularization term
that seamlessly integrates with objectives used to train explicit and tractable
deep generative frameworks such as deep normalizing flow models. We demonstrate
via extensive experimental validation that the proposed framework outperforms
competing techniques, particularly as the rate of data paucity approaches
unity.
Related papers
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows [0.0]
This study investigates the efficacy of machine learning models, specifically Random Forest, in anomaly detection systems.
We explore the performance disparity that arises when models are applied to incomplete data typical in real-world, real-time network environments.
arXiv Detail & Related papers (2024-07-03T07:14:25Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - MissDiff: Training Diffusion Models on Tabular Data with Missing Values [29.894691645801597]
This work presents a unified and principled diffusion-based framework for learning from data with missing values.
We first observe that the widely adopted "impute-then-generate" pipeline may lead to a biased learning objective.
We prove the proposed method is consistent in learning the score of data distributions, and the proposed training objective serves as an upper bound for the negative likelihood in certain cases.
arXiv Detail & Related papers (2023-07-02T03:49:47Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Variational Gibbs Inference for Statistical Model Estimation from
Incomplete Data [7.4250022679087495]
We introduce variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data.
We validate VGI on a set of synthetic and real-world estimation tasks, estimating important machine learning models such as variational autoencoders and normalising flows from incomplete data.
arXiv Detail & Related papers (2021-11-25T17:22:22Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - MAIN: Multihead-Attention Imputation Networks [4.427447378048202]
We propose a novel mechanism based on multi-head attention which can be applied effortlessly in any model.
Our method inductively models patterns of missingness in the input data in order to increase the performance of the downstream task.
arXiv Detail & Related papers (2021-02-10T13:50:02Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.