Variational Gibbs Inference for Statistical Model Estimation from
Incomplete Data
- URL: http://arxiv.org/abs/2111.13180v4
- Date: Tue, 15 Aug 2023 08:57:59 GMT
- Title: Variational Gibbs Inference for Statistical Model Estimation from
Incomplete Data
- Authors: Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann
- Abstract summary: We introduce variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data.
We validate VGI on a set of synthetic and real-world estimation tasks, estimating important machine learning models such as variational autoencoders and normalising flows from incomplete data.
- Score: 7.4250022679087495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical models are central to machine learning with broad applicability
across a range of downstream tasks. The models are controlled by free
parameters that are typically estimated from data by maximum-likelihood
estimation or approximations thereof. However, when faced with real-world data
sets many of the models run into a critical issue: they are formulated in terms
of fully-observed data, whereas in practice the data sets are plagued with
missing data. The theory of statistical model estimation from incomplete data
is conceptually similar to the estimation of latent-variable models, where
powerful tools such as variational inference (VI) exist. However, in contrast
to standard latent-variable models, parameter estimation with incomplete data
often requires estimating exponentially-many conditional distributions of the
missing variables, hence making standard VI methods intractable. We address
this gap by introducing variational Gibbs inference (VGI), a new
general-purpose method to estimate the parameters of statistical models from
incomplete data. We validate VGI on a set of synthetic and real-world
estimation tasks, estimating important machine learning models such as
variational autoencoders and normalising flows from incomplete data. The
proposed method, whilst general-purpose, achieves competitive or better
performance than existing model-specific estimation methods.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
We propose the first general approach to handle model misspecification that works across different classes of simulation-based inference methods.
We show that our method yields robust inference in misspecified scenarios, whilst still being accurate when the model is well-specified.
arXiv Detail & Related papers (2023-05-25T09:06:26Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
arXiv Detail & Related papers (2021-04-03T20:57:57Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.