Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
- URL: http://arxiv.org/abs/2407.02856v1
- Date: Wed, 3 Jul 2024 07:14:25 GMT
- Title: Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
- Authors: Adrian Pekar, Richard Jozsa,
- Abstract summary: This study investigates the efficacy of machine learning models, specifically Random Forest, in anomaly detection systems.
We explore the performance disparity that arises when models are applied to incomplete data typical in real-world, real-time network environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the efficacy of machine learning models, specifically Random Forest, in anomaly detection systems when trained on complete flow records and tested on partial flow data. We explore the performance disparity that arises when models are applied to incomplete data typical in real-world, real-time network environments. Our findings demonstrate a significant decline in model performance, with precision and recall dropping by up to 30\% under certain conditions when models trained on complete flows are tested against partial flows. Conversely, models trained and tested on consistently complete or partial datasets maintain robustness, highlighting the importance of dataset consistency in training. The study reveals that a minimum of 7 packets in the test set is required for maintaining reliable detection rates. These results underscore the need for tailored training strategies that can effectively adapt to the dynamics of partial data, enhancing the practical applicability of anomaly detection systems in operational settings.
Related papers
- Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
We introduce complementary learning, where we use learned characteristics from different training paradigms to detect model errors.
We demonstrate our approach by learning semantic and predictive motion labels in point clouds in a supervised and self-supervised manner.
We perform a large-scale qualitative analysis and present LidarCODA, the first dataset with labeled anomalies in lidar point clouds.
arXiv Detail & Related papers (2024-07-19T13:36:35Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
We find that two unfavorable defects are concealed in the prevalent adaptation methodologies like test-time batch normalization (BN) and self-learning.
First, we reveal that the normalization statistics in test-time BN are completely affected by the currently received test samples, resulting in inaccurate estimates.
Second, we show that during test-time adaptation, the parameter update is biased towards some dominant classes.
arXiv Detail & Related papers (2023-01-30T15:54:00Z) - Data Valuation Without Training of a Model [8.89493507314525]
We propose a training-free data valuation score, called complexity-gap score, to quantify the influence of individual instances in generalization of neural networks.
The proposed score can quantify irregularity of the instances and measure how much each data instance contributes in the total movement of the network parameters during training.
arXiv Detail & Related papers (2023-01-03T02:19:20Z) - A monitoring framework for deployed machine learning models with supply
chain examples [2.904613270228912]
We describe a framework for monitoring machine learning models; and, (2) its implementation for a big data supply chain application.
We use our implementation to study drift in model features, predictions, and performance on three real data sets.
arXiv Detail & Related papers (2022-11-11T14:31:38Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
arXiv Detail & Related papers (2021-04-03T20:57:57Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.