Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent
Class Embedding
- URL: http://arxiv.org/abs/2206.15275v1
- Date: Thu, 30 Jun 2022 13:28:53 GMT
- Title: Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent
Class Embedding
- Authors: Ruochen Li, Stamos Katsigiannis, Hubert P. H. Shum
- Abstract summary: Trajectory prediction of road users in real-world scenarios is challenging because their movement patterns are complex.
Previous pedestrian-oriented works have been successful in modelling the complex interactions among pedestrians, but fail in predicting trajectories when other types of road users are involved.
We propose Multiclass-SGCN, a sparse graph convolution network based approach for multi-class trajectory prediction.
- Score: 12.839645409931407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction of road users in real-world scenarios is challenging
because their movement patterns are stochastic and complex. Previous
pedestrian-oriented works have been successful in modelling the complex
interactions among pedestrians, but fail in predicting trajectories when other
types of road users are involved (e.g., cars, cyclists, etc.), because they
ignore user types. Although a few recent works construct densely connected
graphs with user label information, they suffer from superfluous spatial
interactions and temporal dependencies. To address these issues, we propose
Multiclass-SGCN, a sparse graph convolution network based approach for
multi-class trajectory prediction that takes into consideration velocity and
agent label information and uses a novel interaction mask to adaptively decide
the spatial and temporal connections of agents based on their interaction
scores. The proposed approach significantly outperformed state-of-the-art
approaches on the Stanford Drone Dataset, providing more realistic and
plausible trajectory predictions.
Related papers
- AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph
Convolutional Network for Multi-class Trajectory Prediction [9.238700679836855]
We introduce class information into a graph convolutional neural network to better predict the trajectory of an individual.
We propose new metrics, known as Average2 Displacement Error (aADE) and Average Final Displacement Error (aFDE)
It consistently shows superior performance to the state-of-the-arts in existing and the newly proposed metrics.
arXiv Detail & Related papers (2021-08-10T15:02:50Z) - Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction [0.3025231207150811]
Multi-pedestrian trajectory prediction is an indispensable safety element of autonomous systems that interact with crowds in unstructured environments.
We propose Gumbel Social Transformer, in which an Edge Gumbel Selector samples a sparse graph of partially observed pedestrians at each time step.
We demonstrate that our model overcomes the potential problems caused by the assumptions, and our approach outperforms the related works in benchmark evaluation.
arXiv Detail & Related papers (2021-07-15T00:45:11Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatial-Temporal Block and LSTM Network for Pedestrian Trajectories
Prediction [0.0]
In this paper, we propose a novel LSTM-based algorithm for trajectory prediction.
We tackle the problem by considering the static scene and pedestrian.
It is LSTM that encodes the relationship so that our model predicts nodes trajectories in crowd scenarios simultaneously.
arXiv Detail & Related papers (2020-09-22T11:43:40Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
Trajectory prediction is critical for applications of planning safe future movements.
We propose an end-to-end generative model named Attentive Maps Network (AMENet)
AMENet encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction.
arXiv Detail & Related papers (2020-06-15T10:00:07Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
This paper introduces VectorNet, a hierarchical graph neural network that exploits the spatial locality of individual road components represented by vectors.
By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps.
We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset.
arXiv Detail & Related papers (2020-05-08T19:07:03Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.