GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction
- URL: http://arxiv.org/abs/2003.07167v6
- Date: Wed, 10 Mar 2021 06:21:41 GMT
- Title: GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction
- Authors: Chengxin Wang, Shaofeng Cai, Gary Tan
- Abstract summary: We propose a novel CNN-based spatial-temporal graph framework GraphCNT to support more efficient and accurate trajectory predictions.
In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window.
Our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
- Score: 5.346782918364054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the future paths of an agent's neighbors accurately and in a
timely manner is central to the autonomous applications for collision
avoidance. Conventional approaches, e.g., LSTM-based models, take considerable
computational costs in the prediction, especially for the long sequence
prediction. To support more efficient and accurate trajectory predictions, we
propose a novel CNN-based spatial-temporal graph framework GraphTCN, which
models the spatial interactions as social graphs and captures the
spatio-temporal interactions with a modified temporal convolutional network. In
contrast to conventional models, both the spatial and temporal modeling of our
model are computed within each local time window. Therefore, it can be executed
in parallel for much higher efficiency, and meanwhile with accuracy comparable
to best-performing approaches. Experimental results confirm that our model
achieves better performance in terms of both efficiency and accuracy as
compared with state-of-the-art models on various trajectory prediction
benchmark datasets.
Related papers
- DST-TransitNet: A Dynamic Spatio-Temporal Deep Learning Model for Scalable and Efficient Network-Wide Prediction of Station-Level Transit Ridership [12.6020349733674]
This paper introduces DST-TransitNet, a hybrid Deep Learning model for system-wide ridership prediction.
It is tested on Bogota's BRT system data, with three distinct social scenarios.
It outperforms state-of-the-art models in precision, efficiency and robustness.
arXiv Detail & Related papers (2024-10-19T06:59:39Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNet is a novel dynamic trajectory forecasting method.
We propose a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions.
Our code is available at https://github.com/XiaolongTang23/HPNet.
arXiv Detail & Related papers (2024-04-09T14:42:31Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
We develop a variational auto-encoder framework that integrates graph-based representations and timesequence models.
Our model infers dynamic interaction graphs augmented with interpretable edge features that characterize the interactions.
We validate our approach through extensive experiments on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-01-07T22:49:24Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.