A Federated Learning Framework for Non-Intrusive Load Monitoring
- URL: http://arxiv.org/abs/2104.01618v1
- Date: Sun, 4 Apr 2021 14:24:50 GMT
- Title: A Federated Learning Framework for Non-Intrusive Load Monitoring
- Authors: Haijin Wang, Caomingzhe Si, Junhua Zhao
- Abstract summary: Non-intrusive load monitoring (NILM) aims at decomposing the total reading of the household power consumption into appliance-wise ones.
Data cooperation among utilities and DNOs who own the NILM data has been increasingly significant.
A framework to improve the performance of NILM with federated learning (FL) has been set up.
- Score: 0.1657441317977376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-intrusive load monitoring (NILM) aims at decomposing the total reading of
the household power consumption into appliance-wise ones, which is beneficial
for consumer behavior analysis as well as energy conservation. NILM based on
deep learning has been a focus of research. To train a better neural network,
it is necessary for the network to be fed with massive data containing various
appliances and reflecting consumer behavior habits. Therefore, data cooperation
among utilities and DNOs (distributed network operators) who own the NILM data
has been increasingly significant. During the cooperation, however, risks of
consumer privacy leakage and losses of data control rights arise. To deal with
the problems above, a framework to improve the performance of NILM with
federated learning (FL) has been set up. In the framework, model weights
instead of the local data are shared among utilities. The global model is
generated by weighted averaging the locally-trained model weights to gather the
locally-trained model information. Optimal model selection help choose the
model which adapts to the data from different domains best. Experiments show
that this proposal improves the performance of local NILM runners. The
performance of this framework is close to that of the centrally-trained model
obtained by the convergent data without privacy protection.
Related papers
- Benchmarking Active Learning for NILM [2.896640219222859]
Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage.
Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data.
We propose an active learning approach to selectively install appliance monitors in a limited number of houses.
arXiv Detail & Related papers (2024-11-24T12:22:59Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We present a novel immersion-aware model trading framework that incentivizes metaverse users (MUs) to contribute learning models for augmented reality (AR) services in the vehicular metaverse.
Considering dynamic network conditions and privacy concerns, we formulate the reward decisions of MSPs as a multi-agent Markov decision process.
Experimental results demonstrate that the proposed framework can effectively provide higher-value models for object detection and classification in AR services on real AR-related vehicle datasets.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
Local training on non-iid distributed data results in deflected local optimum.
A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution.
In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy.
arXiv Detail & Related papers (2022-11-20T06:13:06Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Learning Task-Aware Energy Disaggregation: a Federated Approach [1.52292571922932]
Non-intrusive load monitoring (NILM) aims to find individual devices' power consumption profiles based on aggregated meter measurements.
Yet collecting such residential load datasets require both huge efforts and customers' approval on sharing metering data.
We propose a decentralized and task-adaptive learning scheme for NILM tasks, where nested meta learning and federated learning steps are designed for learning task-specific models collectively.
arXiv Detail & Related papers (2022-04-14T05:53:41Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Fed-NILM: A Federated Learning-based Non-Intrusive Load Monitoring
Method for Privacy-Protection [0.1657441317977376]
Non-intrusive load monitoring (NILM) decomposes the total load reading into appliance-level load signals.
Deep learning-based methods have been developed to accomplish NILM, and the training of deep neural networks (DNN) requires massive load data containing different types of appliances.
For local data owners with inadequate load data but expect to accomplish a promising model performance, the conduction of effective NILM co-modelling is increasingly significant.
To eliminate the potential risks, a novel NILM method named Fed-NILM ap-plying Federated Learning (FL) is proposed in this paper.
arXiv Detail & Related papers (2021-05-24T04:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.