FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction
- URL: http://arxiv.org/abs/2309.10337v1
- Date: Tue, 19 Sep 2023 05:44:18 GMT
- Title: FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction
- Authors: Viorica Chifu, Tudor Cioara, Cristian Anitiei, Cristina Pop, Ionut
Anghel
- Abstract summary: This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy is important when dealing with sensitive personal information in
machine learning models, which require large data sets for training. In the
energy field, access to household prosumer energy data is crucial for energy
predictions to support energy grid management and large-scale adoption of
renewables however citizens are often hesitant to grant access to cloud-based
machine learning models. Federated learning has been proposed as a solution to
privacy challenges however report issues in generating the global prediction
model due to data heterogeneity, variations in generation patterns, and the
high number of parameters leading to even lower prediction accuracy. This paper
addresses these challenges by introducing FedWOA a novel federated learning
model that employs the Whale Optimization Algorithm to aggregate global
prediction models from the weights of local LTSM neural network models trained
on prosumer energy data. The proposed solution identifies the optimal vector of
weights in the search spaces of the local models to construct the global shared
model and then is subsequently transmitted to the local nodes to improve the
prediction quality at the prosumer site while for handling non-IID data K-Means
was used for clustering prosumers with similar scale of energy data. The
evaluation results on prosumers energy data have shown that FedWOA can
effectively enhance the accuracy of energy prediction models accuracy by 25%
for MSE and 16% for MAE compared to FedAVG while demonstrating good convergence
and reduced loss.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Clustering-based Multitasking Deep Neural Network for Solar Photovoltaics Power Generation Prediction [16.263501526929975]
We propose a multitasking deep neural network (CM-DNN) framework for PV power generation prediction.
For each type, a deep neural network (DNN) is employed and trained until the accuracy cannot be improved.
For a specified customer type, inter-model knowledge transfer is conducted to enhance its training accuracy.
The proposed CM-DNN is tested on a real-world PV power generation dataset.
arXiv Detail & Related papers (2024-05-09T00:08:21Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - DER Forecast using Privacy Preserving Federated Learning [0.0]
A distributed machine learning approach, Federated Learning, is proposed to carry out DER forecasting using a network of IoT nodes.
We consider a simulation study which includes 1000 DERs, and show that our method leads to an accurate prediction of preserve consumer privacy.
arXiv Detail & Related papers (2021-07-07T14:25:43Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
Energy demand forecasting is an essential task performed within the energy industry to help balance supply with demand and maintain a stable load on the electricity grid.
As supply transitions towards less reliable renewable energy generation, smart meters will prove a vital component to aid these forecasting tasks.
However, smart meter take-up is low among privacy-conscious consumers that fear intrusion upon their fine-grained consumption data.
arXiv Detail & Related papers (2021-05-27T17:33:09Z) - A Federated Learning Framework for Non-Intrusive Load Monitoring [0.1657441317977376]
Non-intrusive load monitoring (NILM) aims at decomposing the total reading of the household power consumption into appliance-wise ones.
Data cooperation among utilities and DNOs who own the NILM data has been increasingly significant.
A framework to improve the performance of NILM with federated learning (FL) has been set up.
arXiv Detail & Related papers (2021-04-04T14:24:50Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.