Stochastic-Constrained Stochastic Optimization with Markovian Data
- URL: http://arxiv.org/abs/2312.04312v1
- Date: Thu, 7 Dec 2023 14:09:27 GMT
- Title: Stochastic-Constrained Stochastic Optimization with Markovian Data
- Authors: Yeongjong Kim, Dabeen Lee
- Abstract summary: We study the setting where data samples are drawn from a Markov chain and thus are not independent and identically distributed.
We propose two variants of drift-plus-penalty; one is for the case when the mixing time of the underlying Markov chain is known.
Our algorithms apply to a more general setting of constrained online convex optimization where the sequence of constraint functions follows a Markov chain.
- Score: 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers stochastic-constrained stochastic optimization where the
stochastic constraint is to satisfy that the expectation of a random function
is below a certain threshold. In particular, we study the setting where data
samples are drawn from a Markov chain and thus are not independent and
identically distributed. We generalize the drift-plus-penalty framework, a
primal-dual stochastic gradient method developed for the i.i.d. case, to the
Markov chain sampling setting. We propose two variants of drift-plus-penalty;
one is for the case when the mixing time of the underlying Markov chain is
known while the other is for the case of unknown mixing time. In fact, our
algorithms apply to a more general setting of constrained online convex
optimization where the sequence of constraint functions follows a Markov chain.
Both algorithms are adaptive in that the first works without knowledge of the
time horizon while the second uses AdaGrad-style algorithm parameters, which is
of independent interest. We demonstrate the effectiveness of our proposed
methods through numerical experiments on classification with fairness
constraints.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Stochastic Gradient Descent under Markovian Sampling Schemes [3.04585143845864]
We study a variation of vanilla gradient descent where the only has access to a Markovian sampling scheme.
We focus on obtaining rates of convergence under the least restrictive assumptions possible on the underlying Markov chain.
arXiv Detail & Related papers (2023-02-28T09:18:00Z) - Adapting to Mixing Time in Stochastic Optimization with Markovian Data [12.709177728330399]
We consider optimization problems where data is drawn from a Markov chain.
Existing methods for this setting crucially rely on knowing the mixing time of the chain.
Our method relies on a novel combination of multi-level Monte Carlo (ML) gradient estimation together with an adaptive learning method.
arXiv Detail & Related papers (2022-02-09T12:43:11Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
In this paper, we demonstrate the power of a widely used estimator based on moving average (SEMA) problems.
For all these-the-art results, we also present the results for all these-the-art problems.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic
Approximation under Markovian Noise [2.0305676256390934]
We study the so-called two-time-scale approximation, a simulation-based approach for finding the roots of two coupled nonlinear operators.
In particular, we consider the scenario where the data in the method are generated by Markov processes, therefore, they are dependent.
Under some fairly standard assumptions on the operators and the Markov processes, we provide a formula that characterizes the convergence rate of the mean square errors generated by the method to zero.
arXiv Detail & Related papers (2021-04-04T15:19:19Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
In this paper, a general optimization procedure is studied, unifying several variants of the gradient descent such as, among others, the heavy ball method, the Nesterov Accelerated Gradient (S-NAG), and the widely used Adam method.
The avoidance is studied as a noisy discretization of a non-autonomous ordinary differential equation.
arXiv Detail & Related papers (2020-12-07T19:14:49Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.