論文の概要: Explainability-aided Domain Generalization for Image Classification
- arxiv url: http://arxiv.org/abs/2104.01742v1
- Date: Mon, 5 Apr 2021 02:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 00:16:48.039532
- Title: Explainability-aided Domain Generalization for Image Classification
- Title(参考訳): 画像分類のための説明可能性支援ドメイン一般化
- Authors: Robin M. Schmidt
- Abstract要約: 説明可能性文献から手法やアーキテクチャを適用することで、ドメインの一般化という困難な課題に対して最先端のパフォーマンスを達成できることを示す。
そこで我々は,勾配に基づくクラスアクティベーションマップを用いて学習中にネットワークが指導を受ける手法であるDivCAMを含む新しいアルゴリズムを開発し,多様な識別機能に焦点をあてる。
これらの手法は、説明可能性に加えて競合性能を提供するため、深層ニューラルネットワークアーキテクチャのロバスト性を改善するツールとして使用できると論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, for most machine learning settings, gaining some degree of
explainability that tries to give users more insights into how and why the
network arrives at its predictions, restricts the underlying model and hinders
performance to a certain degree. For example, decision trees are thought of as
being more explainable than deep neural networks but they lack performance on
visual tasks. In this work, we empirically demonstrate that applying methods
and architectures from the explainability literature can, in fact, achieve
state-of-the-art performance for the challenging task of domain generalization
while offering a framework for more insights into the prediction and training
process. For that, we develop a set of novel algorithms including DivCAM, an
approach where the network receives guidance during training via gradient based
class activation maps to focus on a diverse set of discriminative features, as
well as ProDrop and D-Transformers which apply prototypical networks to the
domain generalization task, either with self-challenging or attention
alignment. Since these methods offer competitive performance on top of
explainability, we argue that the proposed methods can be used as a tool to
improve the robustness of deep neural network architectures.
- Abstract(参考訳): 従来、ほとんどの機械学習環境では、ネットワークが予測にたどり着く方法と理由に関する洞察をユーザに提供し、基礎となるモデルを制限し、パフォーマンスをある程度妨げようとする、ある程度の説明性を獲得している。
例えば、決定木はディープニューラルネットワークよりも説明しやすいと考えられているが、視覚的なタスクのパフォーマンスは欠落している。
本研究では,説明可能性文献からメソッドやアーキテクチャを適用することで,ドメイン一般化の課題に対して最先端のパフォーマンスを実現すると同時に,予測およびトレーニングプロセスに関するさらなる洞察のためのフレームワークを提供することを実証的に実証する。
そこで我々は,ネットワークが勾配に基づくクラスアクティベーションマップを介してトレーニング中に指導を受ける手法であるDivCAMや,ドメイン一般化タスクにプロトタイプネットワークを適用したProDropやD-Transformerなど,多様な識別機能に注目する手法を開発した。
これらの手法は、説明可能性に加えて競合性能を提供するため、深層ニューラルネットワークアーキテクチャのロバスト性を改善するツールとして使用できると論じる。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations [0.0]
本稿では,既存の手法を改良した生成ネットワークによるディープビジュアライゼーション手法を提案する。
我々のモデルは、使用するネットワーク数を減らし、ジェネレータと識別器のみを必要とすることにより、アーキテクチャを単純化する。
我々のモデルは、事前の訓練知識を少なくし、差別者がガイドとして機能する非敵的訓練プロセスを使用する。
論文 参考訳(メタデータ) (2024-09-20T14:59:25Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - T-TAME: Trainable Attention Mechanism for Explaining Convolutional
Networks and Vision Transformers [9.284740716447342]
ニューラルネットワークの"ブラックボックス"の性質は、説明責任が不可欠であるアプリケーションにおいて、採用の障壁となる。
本稿では,T-TAME(Transformer- compatible Trainable Attention Mechanism for Explanations)を提案する。
提案されたアーキテクチャとトレーニング技術は、どんな畳み込みやビジョントランスフォーマーのようなニューラルネットワークにも容易に適用できる。
論文 参考訳(メタデータ) (2024-03-07T14:25:03Z) - Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods [2.226971382808806]
演算子方程式の反復的手法に基づく理論的枠組みを開発する。
拡散モデルやAlphaFoldのような一般的なアーキテクチャは本質的に反復的演算子学習を採用していることを実証する。
本研究の目的は,数値解析から洞察を融合させることにより,ディープラーニングの理解を深めることである。
論文 参考訳(メタデータ) (2023-10-02T20:25:36Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
アクティベーション最大化アプローチは、訓練されたディープラーニングモデルの解釈と解析に使用される。
本研究では,解釈を欺くためにモデルを操作する敵の概念を考察する。
論文 参考訳(メタデータ) (2023-06-12T19:54:33Z) - Learning Good Features to Transfer Across Tasks and Domains [16.05821129333396]
まず、与えられたドメイン内のタスク固有の深い機能間のマッピングを学習することで、タスク間でそのような知識を共有できることを示します。
そして、ニューラルネットワークによって実装されたこのマッピング関数が、新しい未知の領域に一般化可能であることを示す。
論文 参考訳(メタデータ) (2023-01-26T18:49:39Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Embracing the Dark Knowledge: Domain Generalization Using Regularized
Knowledge Distillation [65.79387438988554]
十分なデータと代表データがない場合の一般化能力の欠如は、その実践的応用を妨げる課題の1つである。
我々はKDDG(Knowledge Distillation for Domain Generalization)という,シンプルで効果的な,プラグアンドプレイのトレーニング戦略を提案する。
教師ネットワークからの「より豊かな暗黒知識」と、我々が提案した勾配フィルタの両方が、マッピングの学習の難しさを軽減することができる。
論文 参考訳(メタデータ) (2021-07-06T14:08:54Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。