論文の概要: Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods
- arxiv url: http://arxiv.org/abs/2310.01618v1
- Date: Mon, 2 Oct 2023 20:25:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 18:58:29.569191
- Title: Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods
- Title(参考訳): 演算子学習と数値解析:反復的手法によるニューラルネットワークの改善
- Authors: Emanuele Zappala, Daniel Levine, Sizhuang He, Syed Rizvi, Sacha Levy
and David van Dijk
- Abstract要約: 演算子方程式の反復的手法に基づく理論的枠組みを開発する。
拡散モデルやAlphaFoldのような一般的なアーキテクチャは本質的に反復的演算子学習を採用していることを実証する。
本研究の目的は,数値解析から洞察を融合させることにより,ディープラーニングの理解を深めることである。
- 参考スコア(独自算出の注目度): 2.226971382808806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks, despite their success in numerous applications, often
function without established theoretical foundations. In this paper, we bridge
this gap by drawing parallels between deep learning and classical numerical
analysis. By framing neural networks as operators with fixed points
representing desired solutions, we develop a theoretical framework grounded in
iterative methods for operator equations. Under defined conditions, we present
convergence proofs based on fixed point theory. We demonstrate that popular
architectures, such as diffusion models and AlphaFold, inherently employ
iterative operator learning. Empirical assessments highlight that performing
iterations through network operators improves performance. We also introduce an
iterative graph neural network, PIGN, that further demonstrates benefits of
iterations. Our work aims to enhance the understanding of deep learning by
merging insights from numerical analysis, potentially guiding the design of
future networks with clearer theoretical underpinnings and improved
performance.
- Abstract(参考訳): ディープニューラルネットワークは、多くの応用で成功したにも拘わらず、しばしば理論の基礎を確立せずに機能する。
本稿では,このギャップを深層学習と古典的数値解析の並列性として橋渡しする。
ニューラルネットワークを所望の解を表す固定点を持つ演算子としてフレーミングすることにより、演算子方程式の反復法に基づく理論的枠組みを開発する。
定義条件の下では、不動点理論に基づく収束証明を示す。
拡散モデルやAlphaFoldのような一般的なアーキテクチャは本質的に反復的演算子学習を採用する。
経験的評価では、ネットワークオペレータによるイテレーションの実行がパフォーマンスの向上を強調する。
また、反復的なグラフニューラルネットワークであるPIGNを導入し、反復の利点をさらに示す。
本研究の目的は,数値解析の知見を融合して深層学習の理解を深めることであり,より明確な理論的基盤を持つ将来のネットワークの設計を導き,性能を向上させることである。
関連論文リスト
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
スパースコーディングとディープラーニングの交差点を探索し,特徴抽出能力の理解を深める。
我々は、畳み込みニューラルネットワーク(CNN)のスパース特徴抽出能力の収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - The Principles of Deep Learning Theory [19.33681537640272]
この本は、実践的妥当性の深いニューラルネットワークを理解するための効果的な理論アプローチを開発する。
これらのネットワークがトレーニングから非自明な表現を効果的に学習する方法について説明する。
トレーニングネットワークのアンサンブルの有効モデル複雑性を,奥行き比が支配していることを示す。
論文 参考訳(メタデータ) (2021-06-18T15:00:00Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
説明可能性文献から手法やアーキテクチャを適用することで、ドメインの一般化という困難な課題に対して最先端のパフォーマンスを達成できることを示す。
そこで我々は,勾配に基づくクラスアクティベーションマップを用いて学習中にネットワークが指導を受ける手法であるDivCAMを含む新しいアルゴリズムを開発し,多様な識別機能に焦点をあてる。
これらの手法は、説明可能性に加えて競合性能を提供するため、深層ニューラルネットワークアーキテクチャのロバスト性を改善するツールとして使用できると論じる。
論文 参考訳(メタデータ) (2021-04-05T02:27:01Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Optimizing Neural Networks via Koopman Operator Theory [6.09170287691728]
クープマン作用素理論は近年、ニューラルネットワーク理論と密接に関連していることが示されている。
この作業では、この接続を利用するための第一歩を踏み出します。
クープマン作用素理論法は、非自明な訓練時間の範囲で、供給重みの重みと偏りの予測を可能にする。
論文 参考訳(メタデータ) (2020-06-03T16:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。