論文の概要: Neural Clinical Event Sequence Prediction through Personalized Online
Adaptive Learning
- arxiv url: http://arxiv.org/abs/2104.01787v1
- Date: Mon, 5 Apr 2021 06:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:48:54.923177
- Title: Neural Clinical Event Sequence Prediction through Personalized Online
Adaptive Learning
- Title(参考訳): パーソナライズされたオンライン適応学習による神経臨床イベントシーケンス予測
- Authors: Jeong Min Lee and Milos Hauskrecht
- Abstract要約: 臨床イベントシーケンスは、時間内の患者のケアの記録を表す数千の臨床イベントで構成される。
臨床症状の予測モデルを学ぶ上で重要な課題は、患者固有の変動性である。
オンラインモデルの更新を通じて、個々の患者の予測を調整することを学ぶ新しい適応イベントシーケンス予測フレームワークを開発します。
- 参考スコア(独自算出の注目度): 11.574235466142833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical event sequences consist of thousands of clinical events that
represent records of patient care in time. Developing accurate prediction
models for such sequences is of a great importance for defining representations
of a patient state and for improving patient care. One important challenge of
learning a good predictive model of clinical sequences is patient-specific
variability. Based on underlying clinical complications, each patient's
sequence may consist of different sets of clinical events. However,
population-based models learned from such sequences may not accurately predict
patient-specific dynamics of event sequences. To address the problem, we
develop a new adaptive event sequence prediction framework that learns to
adjust its prediction for individual patients through an online model update.
- Abstract(参考訳): 臨床イベントシーケンスは、時間内の患者のケアの記録を表す数千の臨床イベントで構成される。
このようなシーケンスの正確な予測モデルを開発することは、患者の状態の表現を定義し、患者のケアを改善する上で非常に重要である。
臨床症状の予測モデルを学ぶ上で重要な課題は、患者固有の変動性である。
基礎となる臨床合併症に基づいて、各患者の配列は異なる臨床イベントから構成される。
しかし、このようなシーケンスから学習した集団モデルでは、イベントシーケンスの患者固有のダイナミクスを正確に予測することはできない。
この問題に対処するために,オンラインモデル更新を通じて個々の患者に対する予測を調整するための適応型イベントシーケンス予測フレームワークを開発した。
関連論文リスト
- Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
我々は、善意、非正当性、自律性、正義の倫理的原則に焦点をあてる。
また,様々なホールドアウトセットサンプリング手法による統計的問題についても論じる。
論文 参考訳(メタデータ) (2024-06-05T11:42:46Z) - Personalized Event Prediction for Electronic Health Records [7.224184629864593]
臨床イベントシーケンスは、時間内の患者のケアの記録を表す数百の臨床イベントから構成される。
臨床シーケンスの予測モデルを学ぶ上で重要な課題は、患者固有の多様性である。
論文 参考訳(メタデータ) (2023-08-21T20:03:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in
Intensive Care Units [31.368873375366213]
HOLMESは医療アプリケーションのためのオンラインモデルアンサンブルである。
HOLMESは精度/レイテンシのトレードオフを効率的にナビゲートし、アンサンブルを構成し、モデルアンサンブルパイプラインを提供することができることを示す。
HOLMESは, 小児心ICUデータにおけるリスク予測タスクにおいて, 64ベッドシミュレーションにおいて95%以上の予測精度とサブ秒レイテンシで検証した。
論文 参考訳(メタデータ) (2020-08-10T12:38:46Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Adaptive Prediction Timing for Electronic Health Records [3.308743964406688]
適応率で患者結果を予測する新しい,より現実的なアプローチを導入する。
リカレントニューラルネットワーク(RNN)とベイズ埋め込み層に新しいアグリゲーション法を適用し,適応予測のタイミングを示す。
入院48時間後,本モデルではスタティックウインドウと同等の性能を示した。
論文 参考訳(メタデータ) (2020-03-05T12:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。