Neural Clinical Event Sequence Prediction through Personalized Online
Adaptive Learning
- URL: http://arxiv.org/abs/2104.01787v2
- Date: Tue, 6 Apr 2021 03:02:09 GMT
- Title: Neural Clinical Event Sequence Prediction through Personalized Online
Adaptive Learning
- Authors: Jeong Min Lee and Milos Hauskrecht
- Abstract summary: Clinical event sequences consist of thousands of clinical events that represent records of patient care in time.
One important challenge of learning a good predictive model of clinical sequences is patient-specific variability.
We develop a new adaptive event sequence prediction framework that learns to adjust its prediction for individual patients through an online model update.
- Score: 11.574235466142833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Clinical event sequences consist of thousands of clinical events that
represent records of patient care in time. Developing accurate prediction
models for such sequences is of a great importance for defining representations
of a patient state and for improving patient care. One important challenge of
learning a good predictive model of clinical sequences is patient-specific
variability. Based on underlying clinical complications, each patient's
sequence may consist of different sets of clinical events. However,
population-based models learned from such sequences may not accurately predict
patient-specific dynamics of event sequences. To address the problem, we
develop a new adaptive event sequence prediction framework that learns to
adjust its prediction for individual patients through an online model update.
Related papers
- Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
We focus on the ethical principles of beneficence, non-maleficence, autonomy and justice.
We also discuss statistical issues arising from different hold-out set sampling methods.
arXiv Detail & Related papers (2024-06-05T11:42:46Z) - Personalized Event Prediction for Electronic Health Records [7.224184629864593]
Clinical event sequences consist of hundreds of clinical events that represent records of patient care in time.
One important challenge of learning predictive models of clinical sequences is their patient-specific variability.
arXiv Detail & Related papers (2023-08-21T20:03:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in
Intensive Care Units [31.368873375366213]
HOLMES is an online model ensemble serving framework for healthcare applications.
We demonstrate that HOLMES is able to navigate the accuracy/latency tradeoff efficiently, compose the ensemble, and serve the model ensemble pipeline.
HOLMES is tested on risk prediction task on pediatric cardio ICU data with above 95% prediction accuracy and sub-second latency on 64-bed simulation.
arXiv Detail & Related papers (2020-08-10T12:38:46Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Adaptive Prediction Timing for Electronic Health Records [3.308743964406688]
We introduce a novel, more realistic, approach to generating patient outcome predictions at an adaptive rate.
We use a Recurrent Neural Network (RNN) and a Bayesian embedding layer with a new aggregation method to demonstrate adaptive prediction timing.
At 48 hours after patient admission, our model achieves equal performance compared to its static-windowed counterparts.
arXiv Detail & Related papers (2020-03-05T12:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.