HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in
Intensive Care Units
- URL: http://arxiv.org/abs/2008.04063v1
- Date: Mon, 10 Aug 2020 12:38:46 GMT
- Title: HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in
Intensive Care Units
- Authors: Shenda Hong, Yanbo Xu, Alind Khare, Satria Priambada, Kevin Maher,
Alaa Aljiffry, Jimeng Sun and Alexey Tumanov
- Abstract summary: HOLMES is an online model ensemble serving framework for healthcare applications.
We demonstrate that HOLMES is able to navigate the accuracy/latency tradeoff efficiently, compose the ensemble, and serve the model ensemble pipeline.
HOLMES is tested on risk prediction task on pediatric cardio ICU data with above 95% prediction accuracy and sub-second latency on 64-bed simulation.
- Score: 31.368873375366213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have achieved expert-level performance in healthcare
with an exclusive focus on training accurate models. However, in many clinical
environments such as intensive care unit (ICU), real-time model serving is
equally if not more important than accuracy, because in ICU patient care is
simultaneously more urgent and more expensive. Clinical decisions and their
timeliness, therefore, directly affect both the patient outcome and the cost of
care. To make timely decisions, we argue the underlying serving system must be
latency-aware. To compound the challenge, health analytic applications often
require a combination of models instead of a single model, to better specialize
individual models for different targets, multi-modal data, different prediction
windows, and potentially personalized predictions. To address these challenges,
we propose HOLMES-an online model ensemble serving framework for healthcare
applications. HOLMES dynamically identifies the best performing set of models
to ensemble for highest accuracy, while also satisfying sub-second latency
constraints on end-to-end prediction. We demonstrate that HOLMES is able to
navigate the accuracy/latency tradeoff efficiently, compose the ensemble, and
serve the model ensemble pipeline, scaling to simultaneously streaming data
from 100 patients, each producing waveform data at 250~Hz. HOLMES outperforms
the conventional offline batch-processed inference for the same clinical task
in terms of accuracy and latency (by order of magnitude). HOLMES is tested on
risk prediction task on pediatric cardio ICU data with above 95% prediction
accuracy and sub-second latency on 64-bed simulation.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care [15.64030213048907]
We propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units.
The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients.
We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks.
arXiv Detail & Related papers (2022-09-16T09:09:15Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.