論文の概要: Frequency Estimation Under Multiparty Differential Privacy: One-shot and
Streaming
- arxiv url: http://arxiv.org/abs/2104.01808v1
- Date: Mon, 5 Apr 2021 08:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:14:20.188917
- Title: Frequency Estimation Under Multiparty Differential Privacy: One-shot and
Streaming
- Title(参考訳): 多党差分プライバシーに基づく周波数推定:ワンショットとストリーミング
- Authors: Ziyue Huang, Yuan Qiu, Ke Yi, Graham Cormode
- Abstract要約: プライバシと通信の制約下での周波数推定の基本的問題について検討し,そのデータを$k$のパーティ間で分散する。
私たちは、ローカルディファレンシャルプライバシ(LDP)と(分散)ディファレンシャルプライバシよりも一般的なマルチパーティディファレンシャルプライバシ(MDP)のモデルを採用しています。
我々のプロトコルは、より厳密な2つの制約によって許容可能な最適性(対数因子まで)を達成する。
- 参考スコア(独自算出の注目度): 10.952006057356714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the fundamental problem of frequency estimation under both privacy
and communication constraints, where the data is distributed among $k$ parties.
We consider two application scenarios: (1) one-shot, where the data is static
and the aggregator conducts a one-time computation; and (2) streaming, where
each party receives a stream of items over time and the aggregator continuously
monitors the frequencies. We adopt the model of multiparty differential privacy
(MDP), which is more general than local differential privacy (LDP) and
(centralized) differential privacy. Our protocols achieve optimality (up to
logarithmic factors) permissible by the more stringent of the two constraints.
In particular, when specialized to the $\varepsilon$-LDP model, our protocol
achieves an error of $\sqrt{k}/(e^{\Theta(\varepsilon)}-1)$ for all
$\varepsilon$, while the previous protocol (Chen et al., 2020) has error
$O(\sqrt{k}/\min\{\varepsilon, \sqrt{\varepsilon}\})$.
- Abstract(参考訳): プライバシと通信の制約下での周波数推定の基本的問題について検討し,そのデータを$k$のパーティ間で分散する。
我々は,(1)データが静的でアグリゲータが1回計算を行うワンショット,(2)各アグリゲータが時間経過とともにアイテムのストリームを受信し,アグリゲータが連続的に周波数を監視するストリーミング,の2つのアプリケーションシナリオを検討した。
我々は、ローカルディファレンシャルプライバシ(LDP)や(集中型)ディファレンシャルプライバシよりも一般的なマルチパーティディファレンシャルプライバシ(MDP)モデルを採用する。
我々のプロトコルは、より厳密な2つの制約によって許容可能な最適性(対数因子まで)を達成する。
特に、$\varepsilon$-LDPモデルに特化すると、我々のプロトコルは、すべての$\varepsilon$に対して$\sqrt{k}/(e^{\Theta(\varepsilon)}-1)のエラーを達成し、以前のプロトコル(Chen et al., 2020)はエラーを$O(\sqrt{k}/\min\{\varepsilon, \sqrt{\varepsilon}\})$とする。
関連論文リスト
- Lightweight Protocols for Distributed Private Quantile Estimation [12.586899971090277]
我々は、各ユーザが1つのデータポイントを1つのドメインに[B]$で保持するときに、1つの量子を推定する2つの強調適応アルゴリズムを考察する。
適応的な設定では、$varepsilon$-LDPアルゴリズムを用い、$O(fraclog Bvarepsilon2alpha2)$ユーザしか必要としないエラー$alpha$内の量子化を推定できる。
論文 参考訳(メタデータ) (2025-02-05T08:39:02Z) - Differential Privacy on Trust Graphs [54.55190841518906]
差分プライバシー(DP)は、各当事者がそのデータで他の当事者の(既知の)サブセットのみを信頼するマルチパーティ環境で研究する。
我々は、DPのローカルモデルよりもはるかに優れたプライバシーとユーティリティのトレードオフを持つ集約のためのDPアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-10-15T20:31:04Z) - On Computing Pairwise Statistics with Local Differential Privacy [55.81991984375959]
例えば$binomn2-1 sum_i ne j f(x_i, x_j)$, $x_i$ は$i$thユーザへの入力を表し、ローカルモデルでは差分プライバシ(DP)である。
この定式化は、Kendallの$tau$ coefficient、Area Under Curve、Giniの平均差、Giniのエントロピーなどの重要なメトリクスをキャプチャする。
論文 参考訳(メタデータ) (2024-06-24T04:06:09Z) - Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
複数のサンプルを持つ場合の個人レベルの個人別平均推定について検討した。
我々は、計算効率のよいアルゴリズムを、純粋DPで、計算効率の悪いアルゴリズムを、ほぼ一致する下界は、近似DPの最も寛容な場合を抑える。
論文 参考訳(メタデータ) (2024-05-30T18:20:35Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Differentially Private Clustering in Data Streams [65.78882209673885]
オフラインのDPコアセットやクラスタリングアルゴリズムをブラックボックスとしてのみ必要とする,差分プライベートなストリーミングクラスタリングフレームワークを提案する。
我々のフレームワークはまた、連続的なリリース設定の下で微分プライベートであり、すなわち、全てのタイムスタンプにおけるアルゴリズムの出力の和は常に微分プライベートである。
論文 参考訳(メタデータ) (2023-07-14T16:11:22Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Robust Estimation of Discrete Distributions under Local Differential
Privacy [1.52292571922932]
局所的な差分プライバシー制約の下で,n$の汚染データバッチから離散分布を推定する問題を考察する。
2つの制約を組み合わせることで、$epsilonsqrtd/alpha2 k+sqrtd2/alpha2 kn$を$sqrtlog (1/epsilon)$ factorに設定できる。
論文 参考訳(メタデータ) (2022-02-14T15:59:02Z) - Infinitely Divisible Noise in the Low Privacy Regime [9.39772079241093]
ユーザ間でデータを分散し、共有しないフェデレーション学習は、プライバシ保護機械学習に対する一般的なアプローチとして現れている。
実数値データに対して、最初の可除な無限ノイズ分布を提示し、$varepsilon$-differential privacyを実現する。
論文 参考訳(メタデータ) (2021-10-13T08:16:43Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
我々は、$n$ユーザのそれぞれが離散集合から要素を保持する設定について研究する。
目標は、すべてのユーザーに対して異なる要素の数を数えることだ。
論文 参考訳(メタデータ) (2020-09-21T04:13:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。