DexDeepFM: Ensemble Diversity Enhanced Extreme Deep Factorization
Machine Model
- URL: http://arxiv.org/abs/2104.01924v1
- Date: Mon, 5 Apr 2021 14:06:32 GMT
- Title: DexDeepFM: Ensemble Diversity Enhanced Extreme Deep Factorization
Machine Model
- Authors: Ling Chen, Hongyu Shi
- Abstract summary: An ensemble diversity enhanced extreme deep factorization machine model (DexDeepFM) is proposed.
Experiments on two public real-world datasets show the superiority of the proposed model.
- Score: 8.73107818888638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting user positive response (e.g., purchases and clicks) probability is
a critical task in Web applications. To identify predictive features from raw
data, the state-of-the-art extreme deep factorization machine (xDeepFM) model
introduces a compressed interaction network (CIN) to leverage feature
interactions at the vector-wise level explicitly. However, since each hidden
layer in CIN is a collection of feature maps, it can be viewed essentially as
an ensemble of different feature maps. In this case, only using a single
objective to minimize the prediction loss may lead to overfitting. In this
paper, an ensemble diversity enhanced extreme deep factorization machine model
(DexDeepFM) is proposed, which introduces the ensemble diversity measure in CIN
and considers both ensemble diversity and prediction accuracy in the objective
function. In addition, the attention mechanism is introduced to discriminate
the importance of ensemble diversity measures with different feature
interaction orders. Extensive experiments on two public real-world datasets
show the superiority of the proposed model.
Related papers
- CAVE: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
In this study, we explore an ensemble-based approach to improve classification accuracy in complex image datasets.
We leverage the unique feature-extraction capabilities of each model to enhance the overall accuracy.
Experimental evaluations demonstrate that the ensemble achieves higher accuracy and robustness across challenging and imbalanced classes.
arXiv Detail & Related papers (2024-10-26T17:25:08Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - ComPtr: Towards Diverse Bi-source Dense Prediction Tasks via A Simple
yet General Complementary Transformer [91.43066633305662]
We propose a novel underlineComPlementary underlinetransformer, textbfComPtr, for diverse bi-source dense prediction tasks.
ComPtr treats different inputs equally and builds an efficient dense interaction model in the form of sequence-to-sequence on top of the transformer.
arXiv Detail & Related papers (2023-07-23T15:17:45Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
We present the first ever mixture of variational approximations for a normalizing flow-based hierarchical variational autoencoder (VAE) with VampPrior and a PixelCNN decoder network.
We explain this cooperative behavior by drawing a novel connection between VI and adaptive importance sampling.
We obtain state-of-the-art results among VAE architectures in terms of negative log-likelihood on the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-09-30T15:01:35Z) - AdnFM: An Attentive DenseNet based Factorization Machine for CTR
Prediction [11.958336595818267]
We propose a novel model called Attentive DenseNet based Factorization Machines (AdnFM)
AdnFM can extract more comprehensive deep features by using all the hidden layers from a feed-forward neural network as implicit high-order features.
Experiments on two real-world datasets show that the proposed model can effectively improve the performance of Click-Through-Rate prediction.
arXiv Detail & Related papers (2020-12-20T01:00:39Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot object detection (FSOD) aims at learning a detector that can fast adapt to previously unseen objects with scarce examples.
Existing methods solve this problem by performing subtasks of classification and localization utilizing a shared component.
We present that a general few-shot detector should consider the explicit decomposition of two subtasks, as well as leveraging information from both of them to enhance feature representations.
arXiv Detail & Related papers (2020-11-30T10:21:32Z) - Information-theoretic Feature Selection via Tensor Decomposition and
Submodularity [38.05393186002834]
We introduce a low-rank tensor model of the joint PMF of all variables and indirect targeting as a way of mitigating complexity and maximizing the classification performance for a given number of features.
By indirectly aiming to predict the latent variable of the naive Bayes model instead of the original target variable, it is possible to formulate the feature selection problem as of a monotone submodular function subject to a cardinality constraint.
arXiv Detail & Related papers (2020-10-30T10:36:46Z) - Multi-Person Pose Estimation with Enhanced Feature Aggregation and
Selection [33.15192824888279]
We propose a novel Enhanced Feature Aggregation and Selection network (EFASNet) for multi-person 2D human pose estimation.
Our method can well handle crowded, cluttered and occluded scenes.
Comprehensive experiments demonstrate that the proposed approach outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2020-03-20T08:33:25Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.