論文の概要: Multi-Atlas Based Pathological Stratification of d-TGA Congenital Heart
Disease
- arxiv url: http://arxiv.org/abs/2104.01960v1
- Date: Mon, 5 Apr 2021 15:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-06 14:31:51.413740
- Title: Multi-Atlas Based Pathological Stratification of d-TGA Congenital Heart
Disease
- Title(参考訳): d-TGA先天性心疾患の病理組織学的検討
- Authors: Maria A. Zuluaga and Alex F. Mendelson and M. Jorge Cardoso and Andrew
M. Taylor and S\'ebastien Ourselin
- Abstract要約: 我々は,atlas選択不良に伴うセグメンテーションエラーを利用して,大血管のデキストロトランスポジション(d-tga)における病的分類のためのcadシステムを構築した。
提案されたアプローチは、セグメンテーションの品質を記述する一連の特徴を抽出し、それらを最終的な診断を提供する論理的な決定木に導入する。
健常症例と術後D-TGAの2つの異なる形態を含む60全体の心臓MR画像のセットでこの方法を検証する。
- 参考スコア(独自算出の注目度): 3.6954389087617345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main sources of error in multi-atlas segmentation propagation
approaches comes from the use of atlas databases that are morphologically
dissimilar to the target image. In this work, we exploit the segmentation
errors associated with poor atlas selection to build a computer aided diagnosis
(CAD) system for pathological classification in post-operative
dextro-transposition of the great arteries (d-TGA). The proposed approach
extracts a set of features, which describe the quality of a segmentation, and
introduces them into a logical decision tree that provides the final diagnosis.
We have validated our method on a set of 60 whole heart MR images containing
healthy cases and two different forms of post-operative d-TGA. The reported
overall CAD system accuracy was of 93.33%.
- Abstract(参考訳): マルチアトラスセグメンテーション伝播アプローチにおけるエラーの主な原因の1つは、対象画像と形態的に異なるatlasデータベースを使用することである。
本研究では,アトラス選択の不良に関連するセグメンテーションエラーを利用して,大動脈の術後デキストロトランスポジション(d-tga)における病的分類のためのcadシステムを構築した。
提案手法は,セグメンテーションの品質を記述した一連の特徴を抽出し,最終的な診断を提供する論理的決定木に導入する。
健常例と術後d-TGAの2種類を含む60枚の心MR画像を用いて,本法の有効性を検証した。
CADシステム全体の精度は93.33%であった。
関連論文リスト
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - Diagnosis Of Takotsubo Syndrome By Robust Feature Selection From The
Complex Latent Space Of DL-based Segmentation Network [4.583480375083946]
医学における分類モデルやセグメンテーションモデルを用いて、潜伏した特徴を学習し、堅牢な特徴選択をオプトアウトし、過度な適合につながる可能性がある。
本稿では,診断を支援するセグメンテーションモデルの潜在空間を用いた特徴選択手法を提案する。
診断精度82%が従来のSOTA (State-of-the-art) を上回り, 心疾患の鑑別診断に有用であった。
論文 参考訳(メタデータ) (2023-12-19T22:53:32Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Automated risk classification of colon biopsies based on semantic
segmentation of histopathology images [4.144141972397873]
本稿では,大腸病理組織像の自動評価における2つの大きな課題に対処するアプローチを提案する。
まず,H&E-Stained whole-slide画像中の複数の組織を分割するAIを用いた手法を提案する。
第2に、コンピュータ支援診断システムの基盤として、最高のAIモデルを使用する。
論文 参考訳(メタデータ) (2021-09-16T11:50:10Z) - A Computer-Aided Diagnosis System for Breast Pathology: A Deep Learning
Approach with Model Interpretability from Pathological Perspective [6.583997407109283]
深層学習による病変検出と分類のためのコンピュータ支援診断システム(CAD)を開発した。
本研究では, 畳み込みニューラルネットワーク(CNN)の分類において, 深い特徴が示され, 包括的解釈が可能となった。
論文 参考訳(メタデータ) (2021-08-05T14:43:59Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z) - Non-invasive modelling methodology for the diagnosis of Coronary Artery
Disease using Fuzzy Cognitive Maps [0.0]
ファジィ・コグニティブ・マップ(FCM)を用いた冠動脈疾患予測のための医療意思決定支援システムについて述べる。
FCMは人間の知識に基づく有望なモデリング手法であり、曖昧さと不確実性を扱うことができる。
新たに提案されたMDSSは、ファジィ論理とファジィ認知マップの基本概念を用いて開発され、結果を改善するためにいくつかの調整がなされている。
論文 参考訳(メタデータ) (2020-04-02T15:10:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。