論文の概要: IoT Security: Botnet detection in IoT using Machine learning
- arxiv url: http://arxiv.org/abs/2104.02231v1
- Date: Tue, 6 Apr 2021 01:47:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 21:47:54.165159
- Title: IoT Security: Botnet detection in IoT using Machine learning
- Title(参考訳): IoTセキュリティ: マシンラーニングを使用したIoTのボットネット検出
- Authors: Satish Pokhrel, Robert Abbas, Bhulok Aryal
- Abstract要約: 本研究は、IoTネットワークにおけるボットネットベースの分散サービス拒否(DDoS)攻撃の検出と緩和に機械学習アルゴリズムを用いた革新的なモデルを提案する。
提案モデルでは,ボットの脅威に関するセキュリティ問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The acceptance of Internet of Things (IoT) applications and services has seen
an enormous rise of interest in IoT. Organizations have begun to create various
IoT based gadgets ranging from small personal devices such as a smart watch to
a whole network of smart grid, smart mining, smart manufacturing, and
autonomous driver-less vehicles. The overwhelming amount and ubiquitous
presence have attracted potential hackers for cyber-attacks and data theft.
Security is considered as one of the prominent challenges in IoT. The key scope
of this research work is to propose an innovative model using machine learning
algorithm to detect and mitigate botnet-based distributed denial of service
(DDoS) attack in IoT network. Our proposed model tackles the security issue
concerning the threats from bots. Different machine learning algorithms such as
K- Nearest Neighbour (KNN), Naive Bayes model and Multi-layer Perception
Artificial Neural Network (MLP ANN) were used to develop a model where data are
trained by BoT-IoT dataset. The best algorithm was selected by a reference
point based on accuracy percentage and area under the receiver operating
characteristics curve (ROC AUC) score. Feature engineering and Synthetic
minority oversampling technique (SMOTE) were combined with machine learning
algorithms (MLAs). Performance comparison of three algorithms used was done in
class imbalance dataset and on the class balanced dataset.
- Abstract(参考訳): IoT(Internet of Things)アプリケーションとサービスの受け入れは、IoTに対する大きな関心が高まっている。
組織は、スマートウォッチのような小さなパーソナルデバイスから、スマートグリッドのネットワーク全体、スマートマイニング、スマート製造、自動運転車など、さまざまなIoTベースのガジェットを作成し始めている。
圧倒的な量とユビキタスな存在は、サイバー攻撃やデータ盗難の可能性を秘めている。
セキュリティはIoTにおける重要な課題のひとつだと考えられている。
この研究の主目的は、IoTネットワークにおけるボットネットベースの分散サービス拒否(DDoS)攻撃の検出と緩和に機械学習アルゴリズムを使用した革新的なモデルを提案することである。
提案モデルでは,ボットの脅威に関するセキュリティ問題に対処する。
K-Nearest Neighbour (KNN)、Naive Bayesモデル、Multi-layer Perception Artificial Neural Network (MLP ANN)といった機械学習アルゴリズムを使用して、データをBoT-IoTデータセットでトレーニングするモデルを開発した。
The best algorithm were selected by a reference point based on accuracy percentage and area under the receiver operating characteristics curve (ROC AUC) score。
特徴工学とSMOTE(Synthetic minority oversampling technique)は機械学習アルゴリズム(MLA)と組み合わせられた。
クラス不均衡データセットとクラスバランスデータセットで使用される3つのアルゴリズムのパフォーマンス比較が行われた。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
IoT(Internet of Things)アプリケーションは、機密データを収集および転送することができる。
ハックされたIoTデバイスを検出する新しい方法を開発する必要がある。
本稿では,Hhson Hawks Optimization(HHO)とRandom Weight Network(RWN)に基づく特徴選択(FS)モデルを提案し,IoTボットネット攻撃を検出する。
論文 参考訳(メタデータ) (2023-02-20T09:38:12Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Collaborative adversary nodes learning on the logs of IoT devices in an
IoT network [0.0]
データの観点からIoTセキュリティのための改良されたアプローチを提案する。
Recurrent Neural Network (RNN) を用いたAdLIoTLogモデルの提案
その結果,AdLIoTLogモデルの予測性能は攻撃の有無で3~4%低下した。
論文 参考訳(メタデータ) (2021-12-22T02:56:22Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Performance Analysis and Comparison of Machine and Deep Learning
Algorithms for IoT Data Classification [0.0]
本稿では,6つのIoT関連データセットを用いた分類タスクにおいて,11の一般的な機械学習アルゴリズムとディープラーニングアルゴリズムの性能評価を行う。
すべてのパフォーマンス指標を考慮すると、Random Forestsは他の機械学習モデルよりも優れており、ディープラーニングモデルのうち、ANNとCNNはより興味深い結果を得た。
論文 参考訳(メタデータ) (2020-01-27T09:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。