論文の概要: Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network
- arxiv url: http://arxiv.org/abs/2207.07903v1
- Date: Sat, 16 Jul 2022 11:12:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 07:43:06.829993
- Title: Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network
- Title(参考訳): 教師なしアンサンブルに基づくIoTネットワークにおける攻撃検出のためのディープラーニングアプローチ
- Authors: Mir Shahnawaz Ahmed and Shahid Mehraj Shah
- Abstract要約: モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) has altered living by controlling devices/things
over the Internet. IoT has specified many smart solutions for daily problems,
transforming cyber-physical systems (CPS) and other classical fields into smart
regions. Most of the edge devices that make up the Internet of Things have very
minimal processing power. To bring down the IoT network, attackers can utilise
these devices to conduct a variety of network attacks. In addition, as more and
more IoT devices are added, the potential for new and unknown threats grows
exponentially. For this reason, an intelligent security framework for IoT
networks must be developed that can identify such threats. In this paper, we
have developed an unsupervised ensemble learning model that is able to detect
new or unknown attacks in an IoT network from an unlabelled dataset. The
system-generated labelled dataset is used to train a deep learning model to
detect IoT network attacks. Additionally, the research presents a feature
selection mechanism for identifying the most relevant aspects in the dataset
for detecting attacks. The study shows that the suggested model is able to
identify the unlabelled IoT network datasets and DBN (Deep Belief Network)
outperform the other models with a detection accuracy of 97.5% and a false
alarm rate of 2.3% when trained using labelled dataset supplied by the proposed
approach.
- Abstract(参考訳): IoT(Internet of Things)は、デバイスやものをインターネット上でコントロールすることで、生活を変えてきた。
IoTは、サイバー物理システム(CPS)やその他の古典的な分野をスマートリージョンに変換する、日々の問題に対する多くのスマートソリューションを規定している。
モノのインターネットを構成するエッジデバイスのほとんどは、最小限の処理能力を持っています。
iotネットワークをダウンさせるには、攻撃者はこれらのデバイスをさまざまなネットワーク攻撃に利用することができる。
さらに、より多くのIoTデバイスが追加されるにつれて、新しい未知の脅威の可能性は指数関数的に増大する。
そのため、このような脅威を識別できるIoTネットワークのためのインテリジェントなセキュリティフレームワークを開発する必要がある。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
システム生成のラベル付きデータセットは、IoTネットワーク攻撃を検出するためのディープラーニングモデルをトレーニングするために使用される。
さらに,攻撃検出のためのデータセットの最も関連性の高い側面を特定する機能選択機構を提案する。
本研究は,提案手法によって提供されたラベル付きデータセットを用いてトレーニングした場合,提案モデルが他のモデルよりも97.5%,誤警報率2.3%の精度で,ラベルなしのiotネットワークデータセットとdbn(deep belief network)を識別できることを示す。
関連論文リスト
- Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity [1.294952045574009]
異常に基づく検出手法は、新たな攻撃を見つける上で有望である。
偽陽性のアラームや説明が難しい、費用対効果の低い、といった現実的な課題があります。
本稿では、SDNを使用して、各IoTデバイスの期待する動作を強制し、監視する。
論文 参考訳(メタデータ) (2023-04-11T05:17:51Z) - IoT Security: Botnet detection in IoT using Machine learning [0.0]
本研究は、IoTネットワークにおけるボットネットベースの分散サービス拒否(DDoS)攻撃の検出と緩和に機械学習アルゴリズムを用いた革新的なモデルを提案する。
提案モデルでは,ボットの脅威に関するセキュリティ問題に対処する。
論文 参考訳(メタデータ) (2021-04-06T01:47:50Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
モノのインターネット(IoT)デバイスは、巨大な通信ネットワークを構築するために構築されます。
これらのデバイスは実際には安全ではないため、通信ネットワークが攻撃者によって露出されることを意味する。
本稿では,IoT 複数異常検出のための半監視ネットワーク SS-VTCN を提案する。
論文 参考訳(メタデータ) (2021-04-05T08:51:24Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Towards Learning-automation IoT Attack Detection through Reinforcement
Learning [14.363292907140364]
IoT(Internet of Things)ネットワークにはユニークな特徴があるため、攻撃検出がより困難になる。
従来のハイレート攻撃に加えて、IoT攻撃者が正当なトラフィックを難読化するために、低レート攻撃も広く使用されている。
本稿では,攻撃パターンの変換を自動的に学習し,認識できる強化学習に基づく攻撃検出モデルを提案する。
論文 参考訳(メタデータ) (2020-06-29T06:12:45Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。