3D-Aware Indoor Scene Synthesis with Depth Priors
- URL: http://arxiv.org/abs/2202.08553v2
- Date: Fri, 18 Feb 2022 06:14:57 GMT
- Title: 3D-Aware Indoor Scene Synthesis with Depth Priors
- Authors: Zifan Shi, Yujun Shen, Jiapeng Zhu, Dit-Yan Yeung, Qifeng Chen
- Abstract summary: Existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside.
We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry.
- Score: 62.82867334012399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent advancement of Generative Adversarial Networks (GANs) in
learning 3D-aware image synthesis from 2D data, existing methods fail to model
indoor scenes due to the large diversity of room layouts and the objects
inside. We argue that indoor scenes do not have a shared intrinsic structure,
and hence only using 2D images cannot adequately guide the model with the 3D
geometry. In this work, we fill in this gap by introducing depth as a 3D prior.
Compared with other 3D data formats, depth better fits the convolution-based
generation mechanism and is more easily accessible in practice. Specifically,
we propose a dual-path generator, where one path is responsible for depth
generation, whose intermediate features are injected into the other path as the
condition for appearance rendering. Such a design eases the 3D-aware synthesis
with explicit geometry information. Meanwhile, we introduce a switchable
discriminator both to differentiate real v.s. fake domains and to predict the
depth from a given input. In this way, the discriminator can take the spatial
arrangement into account and advise the generator to learn an appropriate depth
condition. Extensive experimental results suggest that our approach is capable
of synthesizing indoor scenes with impressively good quality and 3D
consistency, significantly outperforming state-of-the-art alternatives.
Related papers
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator [68.0533826852601]
3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes.
Existing methods fail to obtain moderate 3D shapes.
We propose a geometry-aware discriminator to improve 3D-aware GANs.
arXiv Detail & Related papers (2022-09-30T17:59:37Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - NeSF: Neural Semantic Fields for Generalizable Semantic Segmentation of
3D Scenes [25.26518805603798]
NeSF is a method for producing 3D semantic fields from posed RGB images alone.
Our method is the first to offer truly dense 3D scene segmentations requiring only 2D supervision for training.
arXiv Detail & Related papers (2021-11-25T21:44:54Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.