Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation
- URL: http://arxiv.org/abs/2407.13362v1
- Date: Thu, 18 Jul 2024 10:13:56 GMT
- Title: Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation
- Authors: Pengfei Wang, Yuxi Wang, Shuai Li, Zhaoxiang Zhang, Zhen Lei, Lei Zhang,
- Abstract summary: We propose Geometry Guided Self-Distillation (GGSD) to learn superior 3D representations from 2D pre-trained models.
Due to the advantages of 3D representation, the performance of the distilled 3D student model can significantly surpass that of the 2D teacher model.
- Score: 67.36775428466045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of large-scale 3D-text paired data poses a great challenge on open vocabulary 3D scene understanding, and hence it is popular to leverage internet-scale 2D data and transfer their open vocabulary capabilities to 3D models through knowledge distillation. However, the existing distillation-based 3D scene understanding approaches rely on the representation capacity of 2D models, disregarding the exploration of geometric priors and inherent representational advantages offered by 3D data. In this paper, we propose an effective approach, namely Geometry Guided Self-Distillation (GGSD), to learn superior 3D representations from 2D pre-trained models. Specifically, we first design a geometry guided distillation module to distill knowledge from 2D models, and then leverage the 3D geometric priors to alleviate the inherent noise in 2D models and enhance the representation learning process. Due to the advantages of 3D representation, the performance of the distilled 3D student model can significantly surpass that of the 2D teacher model. This motivates us to further leverage the representation advantages of 3D data through self-distillation. As a result, our proposed GGSD approach outperforms the existing open vocabulary 3D scene understanding methods by a large margin, as demonstrated by our experiments on both indoor and outdoor benchmark datasets.
Related papers
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data.
We propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously.
arXiv Detail & Related papers (2023-12-11T18:59:18Z) - PartDistill: 3D Shape Part Segmentation by Vision-Language Model Distillation [20.62672097850052]
PartDistill aims to transfer 2D knowledge from vision-language models to facilitate 3D shape part segmentation.
PartDistill consists of a teacher network that uses a VLM to make 2D predictions and a student network that learns from the 2D predictions.
A bi-directional distillation is carried out within the framework, where the former forward distills the 2D predictions to the student network.
arXiv Detail & Related papers (2023-12-07T03:10:03Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
We present Uni3D, a 3D foundation model to explore the unified 3D representation at scale.
Uni3D uses a 2D ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features.
We show that the strong Uni3D representation also enables applications such as 3D painting and retrieval in the wild.
arXiv Detail & Related papers (2023-10-10T16:49:21Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.