論文の概要: Contrastive Syn-to-Real Generalization
- arxiv url: http://arxiv.org/abs/2104.02290v1
- Date: Tue, 6 Apr 2021 05:10:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 14:07:38.362988
- Title: Contrastive Syn-to-Real Generalization
- Title(参考訳): コントラスト的syn-to-real一般化
- Authors: Wuyang Chen, Zhiding Yu, Shalini De Mello, Sifei Liu, Jose M. Alvarez,
Zhangyang Wang, Anima Anandkumar
- Abstract要約: 我々は,学習した特徴埋め込みの多様性が一般化性能に重要な役割を果たすことを重要視する。
本研究では,イメージネットの知識を生かして合成領域への過剰適合を防ぐ新しい枠組みであるコントラスト合成から実への一般化(csg)を提案する。
CSGの各種合成訓練における効果を実証し、ゼロショット領域の一般化に対する最先端性能を示す。
- 参考スコア(独自算出の注目度): 125.54991489017854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training on synthetic data can be beneficial for label or data-scarce
scenarios. However, synthetically trained models often suffer from poor
generalization in real domains due to domain gaps. In this work, we make a key
observation that the diversity of the learned feature embeddings plays an
important role in the generalization performance. To this end, we propose
contrastive synthetic-to-real generalization (CSG), a novel framework that
leverages the pre-trained ImageNet knowledge to prevent overfitting to the
synthetic domain, while promoting the diversity of feature embeddings as an
inductive bias to improve generalization. In addition, we enhance the proposed
CSG framework with attentional pooling (A-pool) to let the model focus on
semantically important regions and further improve its generalization. We
demonstrate the effectiveness of CSG on various synthetic training tasks,
exhibiting state-of-the-art performance on zero-shot domain generalization.
- Abstract(参考訳): 合成データのトレーニングは、ラベルやデータ共有シナリオに有用である。
しかし、合成訓練されたモデルはしばしばドメインギャップのため、実際のドメインでの一般化に苦しむ。
本研究では,学習した特徴埋め込みの多様性が一般化性能において重要な役割を担っていることを示す。
そこで本研究では,画像ネットの知識を生かして合成領域への過剰フィットを防止し,特徴埋め込みの多様性を帰納的バイアスとして促進し,一般化を改善するための新しい枠組みであるコントラスト・シンセティック・トゥ・リアル・ジェネライゼーション(csg)を提案する。
さらに,提案するcsgフレームワークを注意プーリング(aプール)により拡張し,モデルが意味的に重要な領域に焦点を合わせ,その一般化をさらに向上させる。
CSGの各種合成訓練における効果を実証し、ゼロショット領域の一般化に対する最先端性能を示す。
関連論文リスト
- Revisiting the Robust Generalization of Adversarial Prompt Tuning [4.033827046965844]
本稿では,画像とテキストの特徴のアライメントを高めるために,適応型一貫性誘導型適応型適応型適応プロンプトチューニング(CAPT)フレームワークを提案する。
我々は14のデータセットと4つのデータ空間をまたいだ実験を行い、CAPTが他の最先端の適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-18T02:54:41Z) - Multi-Scale and Multi-Layer Contrastive Learning for Domain Generalization [5.124256074746721]
深部畳み込みニューラルネットワークの一般化能力は、ネットワークの多層的および多スケール的表現を活用することで向上できると論じる。
画像分類器の領域一般化を目的とした,低レベル特徴と高レベル特徴を複数スケールで組み合わせたフレームワークを提案する。
我々のモデルは従来のDG手法よりも優れており、全てのデータセットにおいて競争力と最先端の結果を連続的に生成できることを示す。
論文 参考訳(メタデータ) (2023-08-28T08:54:27Z) - GCISG: Guided Causal Invariant Learning for Improved Syn-to-real
Generalization [1.2215956380648065]
人工的に生成されたデータを用いたディープラーニングモデルのトレーニングは、トレーニングデータが不足している場合の代替となる可能性がある。
本稿では,データ生成のための因果的枠組みを用いて,領域ギャップを特徴付ける。
そこで本研究では,構文から現実への一般化を促進するスタイル不変表現の学習をモデルに促す因果不変学習を提案する。
論文 参考訳(メタデータ) (2022-08-22T02:39:05Z) - A Style and Semantic Memory Mechanism for Domain Generalization [108.98041306507372]
ドメイン内スタイルの不変性は、ドメインの一般化の効率を改善する上で重要な要素である。
本稿では,ドメイン間の意味的特徴の共通性を学習する上で特に有効な,新しい「判断」機構を提案する。
提案手法は最先端の手法をクリアマージンで超越している。
論文 参考訳(メタデータ) (2021-12-14T16:23:24Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
機械学習モデルの根本的な課題は、アウト・オブ・ディストリビューション(OOD)データへの一般化である。
私たちはまず、DEC(Disentanglement-Constrained Domain Generalization)と呼ばれる制約付き最適化としてOOD一般化問題を定式化する。
この変換に基づいて、結合表現の不絡合と領域一般化のための原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:36:32Z) - HCDG: A Hierarchical Consistency Framework for Domain Generalization on
Medical Image Segmentation [33.623948922908184]
ドメイン一般化のための新しい階層的一貫性フレームワーク(HCDG)を提案する。
Extrinsic Consistencyでは、複数のソースドメインにまたがる知識を活用して、データレベルの一貫性を強制します。
Intrinsic Consistencyでは、デュアルタスクシナリオの下で同じインスタンスに対してタスクレベルの一貫性を実行します。
論文 参考訳(メタデータ) (2021-09-13T07:07:23Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Automated Synthetic-to-Real Generalization [142.41531132965585]
本稿では,レイヤワイズ学習率の選択を自動化するためのテキスト学習最適化(L2O)戦略を提案する。
提案手法は,実データを見たり,トレーニングしたりすることなく,合成から現実への一般化性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2020-07-14T10:57:34Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。