論文の概要: CogDual: Enhancing Dual Cognition of LLMs via Reinforcement Learning with Implicit Rule-Based Rewards
- arxiv url: http://arxiv.org/abs/2507.17147v1
- Date: Wed, 23 Jul 2025 02:26:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.832147
- Title: CogDual: Enhancing Dual Cognition of LLMs via Reinforcement Learning with Implicit Rule-Based Rewards
- Title(参考訳): CogDual: 暗黙の規則に基づく強化学習によるLLMのデュアル認知の促進
- Authors: Cheng Liu, Yifei Lu, Fanghua Ye, Jian Li, Xingyu Chen, Feiliang Ren, Zhaopeng Tu, Xiaolong Li,
- Abstract要約: ロールプレイング言語エージェント (RPLA) は,Large Language Models (LLM) に対する重要な適用方向として登場した。
テキスト認識対応推論パラダイムを採用した新しいRPLAであるtextbfCogDualを紹介する。
外部状況認識と内部自己認識を共同でモデル化することにより、CagDualは文字整合性と文脈整合性を改善した応答を生成する。
- 参考スコア(独自算出の注目度): 53.36917093757101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Role-Playing Language Agents (RPLAs) have emerged as a significant application direction for Large Language Models (LLMs). Existing approaches typically rely on prompt engineering or supervised fine-tuning to enable models to imitate character behaviors in specific scenarios, but often neglect the underlying \emph{cognitive} mechanisms driving these behaviors. Inspired by cognitive psychology, we introduce \textbf{CogDual}, a novel RPLA adopting a \textit{cognize-then-respond } reasoning paradigm. By jointly modeling external situational awareness and internal self-awareness, CogDual generates responses with improved character consistency and contextual alignment. To further optimize the performance, we employ reinforcement learning with two general-purpose reward schemes designed for open-domain text generation. Extensive experiments on the CoSER benchmark, as well as Cross-MR and LifeChoice, demonstrate that CogDual consistently outperforms existing baselines and generalizes effectively across diverse role-playing tasks.
- Abstract(参考訳): Role-Playing Language Agents (RPLA) は、Large Language Models (LLMs) の重要な適用方向として登場した。
既存のアプローチは、モデルが特定のシナリオでキャラクターの振る舞いを模倣できるようにするために、プロンプトエンジニアリングや監督された微調整に頼っているが、多くの場合、これらの振る舞いを駆動する基礎となる 'emph{cognitive' メカニズムを無視している。
本稿では,認知心理学に触発された新しいRPLAである「textbf{CogDual}」を紹介した。
外部状況認識と内部自己認識を共同でモデル化することにより、CagDualは文字整合性と文脈整合性を改善した応答を生成する。
さらに性能を最適化するために、オープンドメインテキスト生成用に設計された2つの汎用報酬スキームを用いた強化学習を用いる。
CoSERベンチマークとCross-MRおよびLifeChoiceの広範な実験は、CogDualが既存のベースラインを一貫して上回り、さまざまなロールプレイングタスクを効果的に一般化することを示した。
関連論文リスト
- LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
本稿では、シークエンシャルレコメンデーションのための新しいスケーラブルなLatent ReasoningフレームワークであるLARESを紹介する。
提案手法では,パラメータの複雑性を増大させることなく推理深度を柔軟に拡張できる再帰的アーキテクチャを用いている。
我々のフレームワークは既存の高度なモデルとのシームレスな互換性を示し、推奨性能をさらに向上させる。
論文 参考訳(メタデータ) (2025-05-22T16:22:54Z) - RAIDEN-R1: Improving Role-awareness of LLMs via GRPO with Verifiable Reward [7.9399136525335585]
RAIDEN-R1は、VRAR(Verifiable Role-Awareness Reward)を統合した新しい強化学習フレームワークである
マルチLLMコラボレーションにより,高品質で役割対応のChain-of-Thoughtデータセットを構築した。
RAIDENベンチマークの実験では、RAIDEN-R1の優位性が示されている。
論文 参考訳(メタデータ) (2025-05-15T12:22:10Z) - Relation-R1: Progressively Cognitive Chain-of-Thought Guided Reinforcement Learning for Unified Relation Comprehension [31.952192907460713]
Relation-R1は、テキストファーストの統一関係理解フレームワークである。
認知連鎖(CoT)誘導型微調整(SFT)とグループ相対政策最適化(GRPO)を統合している。
広く使われているPSGデータセットとSWiGデータセットの実験により、リレーショナルR1はバイナリとtextitN-aryリレーショナル理解の両方で最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2025-04-20T14:50:49Z) - Large Language Model Empowered Recommendation Meets All-domain Continual Pre-Training [60.38082979765664]
CPRecは、レコメンデーションのための全ドメイン連続事前トレーニングフレームワークである。
LLMを連続的な事前学習パラダイムを通じて、普遍的なユーザ行動と整合させる。
2つの異なるプラットフォームから5つの実世界のデータセットを実験する。
論文 参考訳(メタデータ) (2025-04-11T20:01:25Z) - A Dual-Agent Adversarial Framework for Robust Generalization in Deep Reinforcement Learning [7.923577336744156]
両エージェント対応型政策学習フレームワークを提案する。
このフレームワークは、エージェントが人間の事前知識を導入することなく、基礎となるセマンティクスを自発的に学習することを可能にする。
実験により, 両エージェントの一般化性能が著しく向上することが確認された。
論文 参考訳(メタデータ) (2025-01-29T02:36:47Z) - GRAM: Generalization in Deep RL with a Robust Adaptation Module [62.662894174616895]
本研究では,深層強化学習における動的一般化の枠組みを提案する。
本稿では,分散環境と分散環境の両方を識別・反応する機構を提供するロバスト適応モジュールを提案する。
我々のアルゴリズムであるGRAMは,展開時の分布内および分布外シナリオにまたがる強力な一般化性能を実現する。
論文 参考訳(メタデータ) (2024-12-05T16:39:01Z) - Rethinking ChatGPT's Success: Usability and Cognitive Behaviors Enabled by Auto-regressive LLMs' Prompting [5.344199202349884]
本研究では,2種類の大規模言語モデルと6種類のタスク固有チャネルにおけるモーダル性の構造を分析した。
本研究では,LLMにおける多様な認知行動の刺激について,自由形テキストと言語文脈の導入を通して検討する。
論文 参考訳(メタデータ) (2024-05-17T00:19:41Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Generalization Guarantees for Imitation Learning [6.542289202349586]
模倣学習からの制御ポリシーは、しばしば新しい環境への一般化に失敗する。
本稿では,PAC-Bayesフレームワークを利用した模倣学習のための厳密な一般化保証を提案する。
論文 参考訳(メタデータ) (2020-08-05T03:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。