論文の概要: Balancing Predictive Relevance of Ligand Biochemical Activities
- arxiv url: http://arxiv.org/abs/2104.02307v1
- Date: Tue, 6 Apr 2021 06:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-07 20:04:33.558089
- Title: Balancing Predictive Relevance of Ligand Biochemical Activities
- Title(参考訳): リガンド生化学活性のバランシング予測
- Authors: Marek Pecha
- Abstract要約: 従来の教師付き機械学習技術、すなわちSupport Vector Machinesを用いて、非校正モデルのトレーニングを行う。
SVMはトレーニングサンプルの中で不均衡なデータセット、アウトレーヤ、高い多重線形性に敏感である。
モデルの予測関連性のバランスをとる手法として,Plattのスケーリングを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a technique for balancing predictive relevance
models related to supervised modelling ligand biochemical activities to
biological targets. We train uncalibrated models employing conventional
supervised machine learning technique, namely Support Vector Machines.
Unfortunately, SVMs have a serious drawback. They are sensitive to imbalanced
datasets, outliers and high multicollinearity among training samples, which
could be a cause of preferencing one group over another. Thus, an additional
calibration could be required for balancing a predictive relevance of models.
As a technique for this balancing, we propose the Platt's scaling. The achieved
results were demonstrated on single-target models trained on datasets exported
from the ExCAPE database. Unlike traditional used machine techniques, we focus
on decreasing uncertainty employing deterministic solvers.
- Abstract(参考訳): 本稿では, 生物標的に対するリガンド生化学的活性の制御に関する予測関連モデルのバランスをとる手法を提案する。
従来の教師付き機械学習技術であるSupport Vector Machinesを用いて、非校正モデルのトレーニングを行う。
残念ながら、SVMには深刻な欠点があります。
トレーニングサンプルの中では、不均衡なデータセット、アウトレーヤ、高いマルチコリニティに敏感で、あるグループを別のグループよりも優先する原因になり得る。
したがって、モデルの予測関連性のバランスをとるには追加のキャリブレーションが必要である。
このバランスをとる手法として,Platt's Scalingを提案する。
得られた結果は、ExCAPEデータベースからエクスポートされたデータセットに基づいてトレーニングされた単一ターゲットモデル上で実証された。
従来の機械技術とは異なり、決定論的解法を用いた不確実性の低減に重点を置いている。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC) と呼ばれる新しいアプローチを導入する。
トレーニング過程におけるモデルパラメータのクラスバイアスを推定する。
非ラベル標本に対してモデルの擬似ラベルに二次補正を適用する。
論文 参考訳(メタデータ) (2023-12-27T15:06:36Z) - MCRAGE: Synthetic Healthcare Data for Fairness [3.0089659534785853]
そこで本稿では,MCRAGE (Generative Modeling) の強化による不均衡データセットの増大によるマイノリティクラス再バランスを提案する。
MCRAGEは、デノイング拡散確率モデル (Denoising Diffusion Probabilistic Model, CDDPM) を訓練し、未表現のクラスから高品質な合成EHRサンプルを生成する。
この合成データを使用して、既存の不均衡なデータセットを増大させ、その結果、すべてのクラスにまたがるよりバランスの取れた分散を実現します。
論文 参考訳(メタデータ) (2023-10-27T19:02:22Z) - On Data Imbalance in Molecular Property Prediction with Pre-training [16.211138511816642]
プレトレーニングと呼ばれるテクニックは、機械学習モデルの精度を向上させるために使用される。
事前トレーニングでは、対象タスクでモデルをトレーニングする前に、対象タスクとは異なるプレテキストタスクでモデルをトレーニングする。
本研究では,入力データの不均衡に対処する効果的な事前学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T12:04:14Z) - Towards Understanding How Data Augmentation Works with Imbalanced Data [17.478900028887537]
本稿では,データ拡張が3つの異なる分類器,畳み込みニューラルネットワーク,サポートベクトルマシン,ロジスティック回帰モデルに与える影響について検討する。
本研究は,不均衡データに適用した場合,モデル重み,サポートベクトル,特徴選択に大きな変化が生じることを示す。
DAはデータの分散を促進することによって機能し、機械学習モデルがデータの変化とラベルを関連付けることができる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-04-12T15:01:22Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - On the Importance of Calibration in Semi-supervised Learning [13.859032326378188]
State-of-the-art (SOTA) の半教師付き学習(SSL)手法はラベル付きデータとラベルなしデータの混在を活用することに成功している。
我々は、キャリブレーションを最適化し、標準ビジョンベンチマークでその有効性を実証する新しいSSLモデル群を紹介します。
論文 参考訳(メタデータ) (2022-10-10T15:41:44Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Distraction is All You Need for Fairness [0.0]
本稿では,Distractionモジュールと呼ばれる深層学習モデルの学習戦略を提案する。
この方法は、分類結果に影響を与えるバイアスを制御するのに有効であることが理論的に証明できる。
UCIアダルトおよびヘリテージヘルスデータセットを用いて,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-15T01:46:55Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。