Gravity enhanced quantum spatial target detection
- URL: http://arxiv.org/abs/2104.02314v3
- Date: Sat, 18 Jun 2022 03:01:11 GMT
- Title: Gravity enhanced quantum spatial target detection
- Authors: Qianqian Liu, Cuihong Wen, Zehua Tian, Jiliang Jing, Jieci Wang
- Abstract summary: Quantum illumination can utilize entangled light to detect the low-reflectivity target that is hidden in a bright thermal background.
It is found that the spatial quantum illumination with entangled state transmitter outperforms that with coherent-state transmitter in the near-Earth curved spacetime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum illumination can utilize entangled light to detect the
low-reflectivity target that is hidden in a bright thermal background. This
technique is applied to the detection of an object in the curved spacetime of
the Earth, in order to explore how the curvature of spacetime affects quantum
illumination. It is found that the spatial quantum illumination with entangled
state transmitter outperforms that with coherent-state transmitter in the
near-Earth curved spacetime. Moreover, either the quantum illumination system
or the coherent-state system is employed, and gravity can enhance the spacetime
target detection by reducing the thermal signal at the receiver. Besides, our
model in principle can be applied to microwave quantum illumination and thus
provides, to some degree, a theoretical foundation for the upcoming spatial
quantum radar technologies.
Related papers
- Photon Counting Interferometry to Detect Geontropic Space-Time Fluctuations with GQuEST [31.114245664719455]
The GQuEST experiment uses tabletop-scale Michelson laser interferometers to probe for fluctuations in space-time.
We present a practicable interferometer design featuring a novel photon counting readout method that provides unprecedented sensitivity.
arXiv Detail & Related papers (2024-04-11T07:38:36Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Entanglement-enhanced quantum ranging in the near-Earth spacetime [0.0]
We propose a quantum ranging protocol to determine the distance between an observer and a target at the line of sight in the near-Earth curved spacetime.
We find that the maximum potential advantages of the quantum ranging strategy in the curved spacetime outperform its flat spacetime counterpart.
arXiv Detail & Related papers (2022-05-11T12:40:51Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Observing quantum coherence from photons scattered in free-space [0.0]
We demonstrate a novel approach to transfer and recover quantum coherence from scattered non-line-of-sight photons.
The observed time-bin visibility for scattered photons remained at a high $95%$ over a wide scattering angle range of -45 degree to +45 degree.
We believe our method will instigate new lines for research and development on applying photon coherence from scattered signals to quantum sensing, imaging, and communication in free-space environments.
arXiv Detail & Related papers (2021-02-27T19:26:11Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Space-Time Quantum Metasurfaces [0.0]
We introduce the concept of space-time quantum metasurfaces for dynamical control of quantum light.
Photonic platforms based on the space-time quantum metasurface concept have the potential to enable novel functionalities.
arXiv Detail & Related papers (2021-01-25T21:48:06Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.