Noise Estimation for Generative Diffusion Models
- URL: http://arxiv.org/abs/2104.02600v1
- Date: Tue, 6 Apr 2021 15:46:16 GMT
- Title: Noise Estimation for Generative Diffusion Models
- Authors: Robin San-Roman, Eliya Nachmani, Lior Wolf
- Abstract summary: In this work, we present a simple and versatile learning scheme that can adjust the noise parameters for any given number of steps.
Our approach comes at a negligible computation cost.
- Score: 91.22679787578438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative diffusion models have emerged as leading models in speech and
image generation. However, in order to perform well with a small number of
denoising steps, a costly tuning of the set of noise parameters is needed. In
this work, we present a simple and versatile learning scheme that can
step-by-step adjust those noise parameters, for any given number of steps,
while the previous work needs to retune for each number separately.
Furthermore, without modifying the weights of the diffusion model, we are able
to significantly improve the synthesis results, for a small number of steps.
Our approach comes at a negligible computation cost.
Related papers
- Noise Conditional Variational Score Distillation [60.38982038894823]
Noise Conditional Variational Score Distillation (NCVSD) is a novel method for distilling pretrained diffusion models into generative denoisers.<n>By integrating this insight into the Variational Score Distillation framework, we enable scalable learning of generative denoisers.
arXiv Detail & Related papers (2025-06-11T06:01:39Z) - A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models [3.8623569699070357]
Noise PPO is a minimalist reinforcement learning algorithm that learns a prompt-conditioned initial noise generator.<n>Experiments show that Noise PPO consistently improves alignment and sample quality over the original model.<n>These findings reinforce the practical value of minimalist RL fine-tuning for diffusion models.
arXiv Detail & Related papers (2025-05-23T00:01:52Z) - Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization [33.13911801301048]
Deep neural networks degrade in generalization performance under noisy supervision.<n>Existing methods focus on isolating clean subsets or correcting noisy labels.<n>We propose a novel two-stage noisy learning framework that enables instance-level optimization.
arXiv Detail & Related papers (2025-05-01T19:12:58Z) - One Step Diffusion via Shortcut Models [109.72495454280627]
We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples.
Shortcut models condition the network on the current noise level and also on the desired step size, allowing the model to skip ahead in the generation process.
Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
arXiv Detail & Related papers (2024-10-16T13:34:40Z) - Discrete Copula Diffusion [44.96934660818884]
We identify a fundamental limitation that prevents discrete diffusion models from achieving strong performance with fewer steps.
We introduce a general approach to supplement the missing dependency information by incorporating another deep generative model, termed the copula model.
Our method does not require fine-tuning either the diffusion model or the copula model, yet it enables high-quality sample generation with significantly fewer denoising steps.
arXiv Detail & Related papers (2024-10-02T18:51:38Z) - Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
We propose general noise model Bayesian inference methods that integrate the surface code's tensor network simulator.
For stationary noise, where the noise parameters are constant and do not change, we propose a method based on the Markov chain Monte Carlo.
For time-varying noise, which is a more realistic situation, we introduce another method based on the sequential Monte Carlo.
arXiv Detail & Related papers (2024-06-13T10:26:04Z) - One Noise to Rule Them All: Learning a Unified Model of Spatially-Varying Noise Patterns [33.293193191683145]
We present a single generative model which can learn to generate multiple types of noise as well as blend between them.
We also present an application of our model to improving inverse procedural material design.
arXiv Detail & Related papers (2024-04-25T02:23:11Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion Models [82.78899138400435]
We introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy method to maximize a carefully designed reward function.
We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar visual quality compared to the baseline.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation [53.04220377034574]
We propose incorporating an analytical image attenuation process into the forward diffusion process for high-quality (un)conditioned image generation.<n>Our method represents the forward image-to-noise mapping as simultaneous textitimage-to-zero mapping and textitzero-to-noise mapping.<n>We have conducted experiments on unconditioned image generation, textite.g., CIFAR-10 and CelebA-HQ-256, and image-conditioned downstream tasks such as super-resolution, saliency detection, edge detection, and image inpainting.
arXiv Detail & Related papers (2023-06-23T18:08:00Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality.
To reduce computational complexity, LinDiff employs a patch-based processing approach that partitions the input signal into small patches.
Our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed.
arXiv Detail & Related papers (2023-06-09T07:02:43Z) - On tuning consistent annealed sampling for denoising score matching [17.10144603522758]
Score-based generative models provide state-of-the-art quality for image and audio synthesis.
In this note, we first overview three common sampling schemes for models trained with denoising score matching.
arXiv Detail & Related papers (2021-04-08T12:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.