論文の概要: Pathological Image Segmentation with Noisy Labels
- arxiv url: http://arxiv.org/abs/2104.02602v1
- Date: Sat, 20 Mar 2021 03:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 08:24:23.245888
- Title: Pathological Image Segmentation with Noisy Labels
- Title(参考訳): 雑音ラベルを用いた病理画像分割
- Authors: Li Xiao, Yinhao Li, Luxi Qv, Xinxia Tian, Yijie Peng, S.Kevin Zhou
- Abstract要約: 本稿では,各画素の異なる専門家のラベルの信頼性を考慮した新しいラベル再重み付けフレームワークを提案する。
我々はまた、モデルの重要領域への注力を促すために、事前知識として粗さを生かした新しい注目ヒートマップも考案した。
- 参考スコア(独自算出の注目度): 13.8002043402326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation of pathological images is essential for accurate disease
diagnosis. The quality of manual labels plays a critical role in segmentation
accuracy; yet, in practice, the labels between pathologists could be
inconsistent, thus confusing the training process. In this work, we propose a
novel label re-weighting framework to account for the reliability of different
experts' labels on each pixel according to its surrounding features. We further
devise a new attention heatmap, which takes roughness as prior knowledge to
guide the model to focus on important regions. Our approach is evaluated on the
public Gleason 2019 datasets. The results show that our approach effectively
improves the model's robustness against noisy labels and outperforms
state-of-the-art approaches.
- Abstract(参考訳): 病理像の分離は正確な疾患診断に不可欠である。
手動ラベルの品質はセグメンテーションの精度において重要な役割を担っているが、実際には病理学者間のラベルは矛盾し、訓練過程を混乱させる可能性がある。
本研究では,各画素における異なる専門家のラベルの信頼性を,周囲の特徴に応じて考慮した新しいラベル再重み付けフレームワークを提案する。
さらに,事前知識としてラフネスを取り入れ,重要な領域にモデルを集中させる新たな注目ヒートマップを考案する。
我々のアプローチは、パブリックなGleason 2019データセットで評価されます。
その結果,提案手法はノイズラベルに対するモデルのロバスト性が効果的に向上し,最先端手法よりも優れていることがわかった。
関連論文リスト
- Deep Self-Cleansing for Medical Image Segmentation with Noisy Labels [33.676420623855314]
医用画像のセグメンテーションは、疾患の診断と手術計画を支援する医療画像の分野で重要である。
確立されたセグメンテーション手法の多くは、監督された深層学習に依存しており、クリーンで正確なラベルが監督に不可欠である。
トレーニング段階でノイズを除去しながら、クリーンなラベルを保存できるディープ・セルフ・クリーン・セグメンテーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-08T08:33:32Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
病理組織像のセグメンテーション結果を生成するためのコントラストモデルを提案する。
本手法は,病理組織像における対象領域の共通特性を考察し,エンドツーエンドで訓練することができる。
より地域的に一貫性があり、スムーズな境界セグメンテーションを生成することができ、未ラベルの新規領域に対してより堅牢である。
論文 参考訳(メタデータ) (2023-04-07T10:12:21Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
本稿では,半教師付きセマンティックセグメンテーションのための管理手法を提案する。
少数のラベル付き画像を参照材料として使用し、未ラベル画像中の画素と参照集合内の最適な画素のセマンティクスを一致させる。
我々は,X線解剖学的セグメンテーションにおける標準完全教師付きモデルと同じ性能を達成するが,ラベル付き画像の95%は少ない。
論文 参考訳(メタデータ) (2021-12-01T12:21:24Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
医用画像における2種類のラベルノイズについて論じ,定義する。
医用画像分類作業中にこれら2つのラベルノイズを処理する不確実性推定に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-28T14:56:45Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Manifold-driven Attention Maps for Weakly Supervised Segmentation [9.289524646688244]
本稿では,視覚的に有意な領域を強化するために,多様体駆動型注意ネットワークを提案する。
提案手法は,余分な計算を必要とせずに,推論中により優れた注意マップを生成できる。
論文 参考訳(メタデータ) (2020-04-07T00:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。