Hierarchical compressed sensing
- URL: http://arxiv.org/abs/2104.02721v2
- Date: Wed, 8 Dec 2021 16:54:32 GMT
- Title: Hierarchical compressed sensing
- Authors: Jens Eisert, Axel Flinth, Benedikt Gro{\ss}, Ingo Roth, Gerhard Wunder
- Abstract summary: Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements.
We present recovery algorithms based on efficient hierarchical hard-thresholding.
Building upon this machinery, we sketch practical applications of this framework in machine-type communications and quantum tomography.
- Score: 5.39680014668952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressed sensing is a paradigm within signal processing that provides the
means for recovering structured signals from linear measurements in a highly
efficient manner. Originally devised for the recovery of sparse signals, it has
become clear that a similar methodology would also carry over to a wealth of
other classes of structured signals. In this work, we provide an overview over
the theory of compressed sensing for a particularly rich family of such
signals, namely those of hierarchically structured signals. Examples of such
signals are constituted by blocked vectors, with only few non-vanishing sparse
blocks. We present recovery algorithms based on efficient hierarchical
hard-thresholding. The algorithms are guaranteed to converge, in a stable
fashion both with respect to measurement noise as well as to model mismatches,
to the correct solution provided the measurement map acts isometrically
restricted to the signal class. We then provide a series of results
establishing the required condition for large classes of measurement ensembles.
Building upon this machinery, we sketch practical applications of this
framework in machine-type communications and quantum tomography.
Related papers
- Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning [57.91994916297646]
Architected hierarchical phononic materials have sparked promise tunability of elastodynamic waves and vibrations over multiple frequency ranges.
In this article, hierarchical unit-cells are obtained, where features at each length scale result in a band gap within a targeted frequency range.
Our approach offers a flexible and efficient method for the exploration of new regions in the hierarchical design space.
arXiv Detail & Related papers (2024-08-15T21:35:06Z) - Shuffled Multi-Channel Sparse Signal Recovery [16.333381000882486]
We pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels.
We show that the problem is equivalent to a structured unlabeled sensing problem, and establish sufficient conditions for unique recovery.
We propose a robust reconstruction method that combines sparse signal recovery with robust linear regression for the two-channel case.
arXiv Detail & Related papers (2022-12-14T17:46:17Z) - Quantum Compressive Sensing: Mathematical Machinery, Quantum Algorithms,
and Quantum Circuitry [10.286119086329762]
Compressive sensing is a protocol that facilitates reconstruction of large signals from relatively few measurements.
Recent efforts in the literature consider instead a data-driven approach, training tensor networks to learn the structure of signals of interest.
We present an alternative "quantum" protocol, in which the state of the tensor network is a quantum state over a set of entangled qubits.
arXiv Detail & Related papers (2022-04-27T16:20:28Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery [16.740247586153085]
We show how to leverage gradient-based learning to solve discrete optimization problems.
Our approach is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators)
We empirically demonstrate the performance and flexibility of GLODISMO in several signal recovery applications.
arXiv Detail & Related papers (2022-02-07T18:27:08Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
Implicit neural representations are a promising new avenue of representing general signals.
Current approach is difficult to scale for a large number of signals or a data set.
We show that meta-learned sparse neural representations achieve a much smaller loss than dense meta-learned models.
arXiv Detail & Related papers (2021-10-27T18:02:53Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution.
In this problem, each channel's measurements are given as convolution of a common source signal and sparse filter.
We demonstrate that our method is superior to classical structured compressive sparse multichannel blind-deconvolution methods in terms of accuracy and speed of sparse filter recovery.
arXiv Detail & Related papers (2020-10-22T02:34:33Z) - A general approach for identifying hierarchical symmetry constraints for
analog circuit layout [2.249249418652524]
This paper presents a general methodology for the automated generation of symmetry constraints.
The proposed method operates hierarchically and uses graph-based algorithms to extract multiple axes of symmetry within a circuit.
An important ingredient of the algorithm is its ability to identify arrays of repeated structures.
arXiv Detail & Related papers (2020-09-30T18:34:58Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.