論文の概要: Sparse Partial Least Squares for Coarse Noisy Graph Alignment
- arxiv url: http://arxiv.org/abs/2104.02810v1
- Date: Tue, 6 Apr 2021 21:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 02:25:08.280511
- Title: Sparse Partial Least Squares for Coarse Noisy Graph Alignment
- Title(参考訳): 粗雑音グラフアライメントのためのスパース部分最小方形
- Authors: Michael Weylandt and George Michailidis and T. Mitchell Roddenberry
- Abstract要約: グラフ信号処理(GSP)は、様々な領域で発生する信号を分析する強力なフレームワークを提供する。
本稿では,観測されたグラフ構造を組み込んで,その基盤となるブロックコミュニティ構造を反映させる,新しい正則化部分最小二乗法を提案する。
- 参考スコア(独自算出の注目度): 10.172041234280865
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph signal processing (GSP) provides a powerful framework for analyzing
signals arising in a variety of domains. In many applications of GSP, multiple
network structures are available, each of which captures different aspects of
the same underlying phenomenon. To integrate these different data sources,
graph alignment techniques attempt to find the best correspondence between
vertices of two graphs. We consider a generalization of this problem, where
there is no natural one-to-one mapping between vertices, but where there is
correspondence between the community structures of each graph. Because we seek
to learn structure at this higher community level, we refer to this problem as
"coarse" graph alignment. To this end, we propose a novel regularized partial
least squares method which both incorporates the observed graph structures and
imposes sparsity in order to reflect the underlying block community structure.
We provide efficient algorithms for our method and demonstrate its
effectiveness in simulations.
- Abstract(参考訳): グラフ信号処理(GSP)は、様々な領域で発生する信号を分析する強力なフレームワークを提供する。
gspの多くのアプリケーションでは、複数のネットワーク構造が利用可能であり、それぞれが同じ現象の異なる側面を捉えている。
これらの異なるデータソースを統合するために、グラフアライメント手法は2つのグラフの頂点間の最適な対応を見つけようとする。
この問題の一般化を考えると、頂点間の自然な一対一写像は存在しないが、各グラフのコミュニティ構造の間には対応がある。
この高いコミュニティレベルで構造を学ぼうとしているので、この問題を"粗い"グラフアライメントと呼んでいる。
そこで本研究では,観測されたグラフ構造を組み込んだ新しい正規化部分最小二乗法を提案し,その基礎となるブロック群集構造を反映してスパーシティを課す。
提案手法のアルゴリズムを効率よく提供し,その有効性をシミュレーションで実証する。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport
Framework [33.77930081327417]
本稿では,不均衡な階層的最適輸送フレームワークに基づく,新しい頑健なグラフマッチング手法を提案する。
グラフマッチングにおいて、クロスモーダルアライメントを利用するための最初の試みを行う。
様々なグラフマッチングタスクの実験は、最先端の手法と比較して、我々の手法の優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-18T16:16:53Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
本稿では,構造化学習と最適輸送アライメントを併用した教師なしグラフアライメントフレームワークSLOTAlignを提案する。
マルチビュー構造学習を取り入れて、グラフ表現能力を高め、グラフ間で継承された構造と特徴の不整合の影響を低減する。
提案したSLOTAlignは、7つの教師なしグラフアライメント法と5つの特殊なKGアライメント法よりも優れた性能と強いロバスト性を示す。
論文 参考訳(メタデータ) (2023-01-30T08:41:36Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、2つの重要なコンポーネントに依存している。
本稿では,学習可能なグラフテンプレートとの距離をグラフ表現のコアに配置する新しい視点を提案する。
この距離埋め込みは、Fused Gromov-Wasserstein (FGW) 距離という最適な輸送距離によって構築される。
論文 参考訳(メタデータ) (2022-05-31T12:24:01Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
グラフマッチングの精度、構造的不整合(SI)を測定するための新しい基準を提案する。
具体的には、SIは、グラフのマルチホップ構造に対応するために熱拡散ウェーブレットを組み込む。
ミラー降下法を用いて,新しいK-ホップ構造に基づくマッチングコストでGromov-Wasserstein距離を解くことにより,SIGMAを導出可能であることを示す。
論文 参考訳(メタデータ) (2022-02-06T15:18:37Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。