論文の概要: DoubleML -- An Object-Oriented Implementation of Double Machine Learning
in Python
- arxiv url: http://arxiv.org/abs/2104.03220v1
- Date: Wed, 7 Apr 2021 16:16:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 12:58:24.049314
- Title: DoubleML -- An Object-Oriented Implementation of Double Machine Learning
in Python
- Title(参考訳): DoubleML - Pythonにおけるダブル機械学習のオブジェクト指向実装
- Authors: Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler
- Abstract要約: DoubleMLはオープンソースのPythonライブラリで、Chernozhukovらのダブル機械学習フレームワークを実装している。
パラメータの推定が機械学習手法に基づく場合、因果パラメータの統計的推測に有効な機能を含む。
このパッケージはMITライセンスで配布されており、科学的なPythonエコシステムのコアライブラリに依存している。
- 参考スコア(独自算出の注目度): 1.4911092205861822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DoubleML is an open-source Python library implementing the double machine
learning framework of Chernozhukov et al. (2018) for a variety of causal
models. It contains functionalities for valid statistical inference on causal
parameters when the estimation of nuisance parameters is based on machine
learning methods. The object-oriented implementation of DoubleML provides a
high flexibility in terms of model specifications and makes it easily
extendable. The package is distributed under the MIT license and relies on core
libraries from the scientific Python ecosystem: scikit-learn, numpy, pandas,
scipy, statsmodels and joblib. Source code, documentation and an extensive user
guide can be found at https://github.com/DoubleML/doubleml-for-py and
https://docs.doubleml.org.
- Abstract(参考訳): DoubleMLはオープンソースのPythonライブラリで、Chernozhukovらのダブル機械学習フレームワークを実装している。
(2018) 様々な因果モデルについて検討した。
ニューサンスパラメータの推定が機械学習手法に基づく場合、因果パラメータの統計的推測に有効な機能を含む。
doublemlのオブジェクト指向実装は、モデル仕様の点で高い柔軟性を提供し、拡張も容易である。
このパッケージはMITライセンス下で配布されており、科学的なPythonエコシステムのコアライブラリであるScikit-learn、numpy、pandas、scipy、statsmodels、Joblibに依存している。
ソースコード、ドキュメント、広範なユーザーガイドはhttps://github.com/DoubleML/doubleml-for-pyとhttps://docs.doubleml.orgにある。
関連論文リスト
- $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning [6.940992962425166]
skwdroは、堅牢な機械学習モデルをトレーニングするためのPythonライブラリである。
一般的な目的のために、Scikit-learn互換の推定器と、PyTorchモジュール用のラッパーの両方を備えている。
論文 参考訳(メタデータ) (2024-10-28T17:16:00Z) - A Comprehensive Guide to Combining R and Python code for Data Science, Machine Learning and Reinforcement Learning [42.350737545269105]
機械学習、ディープラーニング、強化学習プロジェクトを構築するために、PythonのScikit-learn、pytorch、OpenAIのジムライブラリを簡単に実行する方法を示します。
論文 参考訳(メタデータ) (2024-07-19T23:01:48Z) - Causal-learn: Causal Discovery in Python [53.17423883919072]
因果発見は、観測データから因果関係を明らかにすることを目的としている。
$textitcausal-learn$は因果発見のためのオープンソースのPythonライブラリである。
論文 参考訳(メタデータ) (2023-07-31T05:00:35Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApyは、高次元データの分析と特徴付けのためのピソンソフトウェアパッケージである。
固有次元と確率密度を推定し、密度に基づくクラスタリングを行い、異なる距離メトリクスを比較する方法を提供する。
論文 参考訳(メタデータ) (2022-05-04T08:41:59Z) - Deepchecks: A Library for Testing and Validating Machine Learning Models
and Data [8.876608553825227]
Deepchecksは、機械学習モデルとデータを包括的に検証するPythonライブラリである。
我々のゴールは、様々な種類の問題に関連する多くのチェックからなる使いやすいライブラリを提供することです。
論文 参考訳(メタデータ) (2022-03-16T09:37:22Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM は Heterogeneous-Hidden Markov Models (HHMM) のオブジェクト指向Python実装である。
PyHHMMは、異種観測モデル、データ推論の欠如、異なるモデルの順序選択基準、半教師付きトレーニングなど、同様のフレームワークではサポートされない機能を強調している。
PyHHMMは、numpy、scipy、scikit-learn、およびシーボーンPythonパッケージに依存しており、Apache-2.0ライセンスの下で配布されている。
論文 参考訳(メタデータ) (2022-01-12T07:32:36Z) - Scikit-dimension: a Python package for intrinsic dimension estimation [58.8599521537]
この技術ノートは、固有次元推定のためのオープンソースのPythonパッケージであるtextttscikit-dimensionを紹介している。
textttscikit-dimensionパッケージは、Scikit-learnアプリケーションプログラミングインターフェイスに基づいて、既知のID推定子のほとんどを均一に実装する。
パッケージを簡潔に記述し、実生活と合成データにおけるID推定手法の大規模(500以上のデータセット)ベンチマークでその使用を実証する。
論文 参考訳(メタデータ) (2021-09-06T16:46:38Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R [4.830430752756141]
RパッケージのDoubleMLは、ダブル/デバイアスの機械学習フレームワークを実装している。
機械学習手法に基づいた因果モデルでパラメータを推定する機能を提供する。
論文 参考訳(メタデータ) (2021-03-17T12:42:41Z) - mvlearn: Multiview Machine Learning in Python [103.55817158943866]
mvlearnは、主要なマルチビュー機械学習メソッドを実装するPythonライブラリである。
パッケージはPython Package Index(PyPI)とcondaパッケージマネージャからインストールできる。
論文 参考訳(メタデータ) (2020-05-25T02:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。