論文の概要: $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning
- arxiv url: http://arxiv.org/abs/2410.21231v1
- Date: Mon, 28 Oct 2024 17:16:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:12.907885
- Title: $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning
- Title(参考訳): $\texttt{skwdro}$: 分散ロバストな機械学習のためのライブラリ
- Authors: Florian Vincent, Waïss Azizian, Franck Iutzeler, Jérôme Malick,
- Abstract要約: skwdroは、堅牢な機械学習モデルをトレーニングするためのPythonライブラリである。
一般的な目的のために、Scikit-learn互換の推定器と、PyTorchモジュール用のラッパーの両方を備えている。
- 参考スコア(独自算出の注目度): 6.940992962425166
- License:
- Abstract: We present skwdro, a Python library for training robust machine learning models. The library is based on distributionally robust optimization using optimal transport distances. For ease of use, it features both scikit-learn compatible estimators for popular objectives, as well as a wrapper for PyTorch modules, enabling researchers and practitioners to use it in a wide range of models with minimal code changes. Its implementation relies on an entropic smoothing of the original robust objective in order to ensure maximal model flexibility. The library is available at https://github.com/iutzeler/skwdro
- Abstract(参考訳): 堅牢な機械学習モデルをトレーニングするためのPythonライブラリであるskwdroを提示する。
このライブラリは最適な輸送距離を用いた分布的ロバストな最適化に基づいている。
PyTorchモジュールのラッパーも備えており、研究者や実践者が最小限のコード変更で幅広いモデルで使用することができる。
その実装は、最大モデルの柔軟性を確保するために、元の頑健な目的のエントロピー的滑らか化に依存している。
このライブラリはhttps://github.com/iutzeler/skwdroで入手できる。
関連論文リスト
- pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$は、さまざまなPyTorchモジュールに対するカスタマイズ可能な介入をサポートするオープンソースライブラリである。
私たちは、$textbfpyvene$が、ニューラルモデルへの介入を実行し、他のモデルとインターバルされたモデルを共有するための統一されたフレームワークを提供する方法を示します。
論文 参考訳(メタデータ) (2024-03-12T16:46:54Z) - Mixture-Models: a one-stop Python Library for Model-based Clustering
using various Mixture Models [4.60168321737677]
textttMixture-Modelsは、Gaussian Mixture Models(GMM)とその変種を適合させるオープンソースのPythonライブラリである。
様々な第1/第2次最適化ルーチンを使用して、これらのモデルの実装と分析を合理化する。
このライブラリは、BIC、AIC、ログライクな推定など、ユーザフレンドリーなモデル評価ツールを提供する。
論文 参考訳(メタデータ) (2024-02-08T19:34:24Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM は Heterogeneous-Hidden Markov Models (HHMM) のオブジェクト指向Python実装である。
PyHHMMは、異種観測モデル、データ推論の欠如、異なるモデルの順序選択基準、半教師付きトレーニングなど、同様のフレームワークではサポートされない機能を強調している。
PyHHMMは、numpy、scipy、scikit-learn、およびシーボーンPythonパッケージに依存しており、Apache-2.0ライセンスの下で配布されている。
論文 参考訳(メタデータ) (2022-01-12T07:32:36Z) - Latte: Cross-framework Python Package for Evaluation of Latent-Based
Generative Models [65.51757376525798]
Latteは、潜伏型生成モデルを評価するためのPythonライブラリである。
LatteはPyTorchと/Kerasの両方と互換性があり、関数型APIとモジュール型APIの両方を提供する。
論文 参考訳(メタデータ) (2021-12-20T16:00:28Z) - abess: A Fast Best Subset Selection Library in Python and R [1.6208003359512848]
ベストサブセット選択の統一フレームワークを実装したAbessという新しいライブラリを導入する。
アブスは線形モデルの下で時間内に最適解を得る。
ライブラリの中核はC++でプログラムされており、Pythonライブラリインデックスからインストールすることができる。
論文 参考訳(メタデータ) (2021-10-19T02:34:55Z) - MRCpy: A Library for Minimax Risk Classifiers [10.380882297891272]
PythonライブラリであるMRCpyは、ロバストリスク最小化(RRM)アプローチに基づいて、ミニマックスリスク分類器(MRC)を実装している。
MRCpyは、Scikit-learnのような人気のあるPythonライブラリの標準に従い、可読性と使いやすさと、他のライブラリとのシームレスな統合を容易にする。
論文 参考訳(メタデータ) (2021-08-04T10:31:20Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - DoubleML -- An Object-Oriented Implementation of Double Machine Learning
in Python [1.4911092205861822]
DoubleMLはオープンソースのPythonライブラリで、Chernozhukovらのダブル機械学習フレームワークを実装している。
パラメータの推定が機械学習手法に基づく場合、因果パラメータの統計的推測に有効な機能を含む。
このパッケージはMITライセンスで配布されており、科学的なPythonエコシステムのコアライブラリに依存している。
論文 参考訳(メタデータ) (2021-04-07T16:16:39Z) - Picasso: A Sparse Learning Library for High Dimensional Data Analysis in
R and Python [77.33905890197269]
本稿では,様々なスパース学習問題に対して,経路座標を統一的に最適化する新しいライブラリについて述べる。
ライブラリはR++でコード化されており、ユーザフレンドリーなスパース実験を行っている。
論文 参考訳(メタデータ) (2020-06-27T02:39:24Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
本稿では,OPFythonと表記されるPythonベースのOptimum-Path Forestフレームワークを提案する。
OPFythonはPythonベースのライブラリなので、C言語よりもフレンドリーな環境とプロトタイピングの作業スペースを提供する。
論文 参考訳(メタデータ) (2020-01-28T15:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。