論文の概要: Evaluation of Time Series Forecasting Models for Estimation of PM2.5
Levels in Air
- arxiv url: http://arxiv.org/abs/2104.03226v1
- Date: Wed, 7 Apr 2021 16:24:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 13:02:41.171826
- Title: Evaluation of Time Series Forecasting Models for Estimation of PM2.5
Levels in Air
- Title(参考訳): 空気中PM2.5レベル推定のための時系列予測モデルの評価
- Authors: Satvik Garg and Himanshu Jindal
- Abstract要約: この研究では、環境中のPM2.5濃度を推定するために、ARIMA、FBProphet、LSTM、1D CNNなどのディープラーニングモデルを採用する。
予測結果から,すべての手法が平均根平均二乗誤差で比較結果を与えることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air contamination in urban areas has risen consistently over the past few
years. Due to expanding industrialization and increasing concentration of toxic
gases in the climate, the air is getting more poisonous step by step at an
alarming rate. Since the arrival of the Coronavirus pandemic, it is getting
more critical to lessen air contamination to reduce its impact. The specialists
and environmentalists are making a valiant effort to gauge air contamination
levels. However, its genuinely unpredictable to mimic subatomic communication
in the air, which brings about off base outcomes. There has been an ascent in
using machine learning and deep learning models to foresee the results on time
series data. This study adopts ARIMA, FBProphet, and deep learning models such
as LSTM, 1D CNN, to estimate the concentration of PM2.5 in the environment. Our
predicted results convey that all adopted methods give comparative outcomes in
terms of average root mean squared error. However, the LSTM outperforms all
other models with reference to mean absolute percentage error.
- Abstract(参考訳): 都市部の大気汚染はここ数年一貫して増加している。
工業化の拡大と大気中の有毒ガスの濃度の増加により、空気はより危険な速度で段階的に毒性が増している。
新型コロナウイルスのパンデミックの到来以降、大気汚染を軽減し、影響を減らすことがますます重要になっている。
専門家と環境学者は、大気汚染レベルを測るために慎重な努力をしています。
しかし、空気中の原子下コミュニケーションを模倣することは本当に予測できないため、基礎的な結果をもたらす。
時系列データで結果を予測するために、機械学習とディープラーニングモデルの使用が増加しています。
本研究では,環境中のPM2.5濃度を推定するために,ARIMA,FBProphet,LSTM,1D CNNなどのディープラーニングモデルを採用する。
予測した結果から, 適用した手法は平均根平均二乗誤差で比較結果が得られることがわかった。
しかし、LSTMは他の全てのモデルよりも平均絶対パーセンテージ誤差の方が優れている。
関連論文リスト
- Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
本研究の目的は, 大気汚染の健康影響を学習する能力を最大限に活用するために, データのない場所での被験者の大気汚染の予測を行うことである。
これらの課題を、米国国家PM2.5亜種規制データの硫黄(S)と、シアトルの交通関連大気汚染データセットの超微粒子(UFP)の2つのデータセットで解決する。
私たちの重要な貢献は、幅広いモデルの解釈可能かつ同等の尺度に導かれる、変数の重要度に対する一対一のアプローチである。
論文 参考訳(メタデータ) (2024-06-04T05:51:36Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Investigating Data Contamination for Pre-training Language Models [46.335755305642564]
我々は,一連のGPT-2モデルを事前学習することで,事前学習段階におけるデータ汚染の影響について検討する。
評価データから,テキスト汚染 (テキスト, 評価サンプルの入力テキスト) と接地トラス汚染 (テキスト, 入力に要求されるプロンプトと所望の出力) の両方の効果を強調した。
論文 参考訳(メタデータ) (2024-01-11T17:24:49Z) - Residual Diffusion Modeling for Km-scale Atmospheric Downscaling [51.061954281398116]
台湾上空2kmの高解像度気象モデルを用いて,コスト効率の低いダウンスケーリングモデルを訓練した。
textitCorrDiffは、RMSEとCRPSを巧みに表現し、極端な場合でもスペクトルと分布を忠実に回復する。
グローバルな予測のスケールダウンは、これらのメリットの多くを成功裏に維持し、マシンラーニングの天気予報のエンドツーエンドなグローバルなスケールの可能性を先導する。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - AirFormer: Predicting Nationwide Air Quality in China with Transformers [43.48965814702661]
AirFormerは中国全国の空気質を総合的に予測する新しいトランスフォーマーアーキテクチャである。
AirFormerは72時間の予測で予測エラーを5%削減する。
論文 参考訳(メタデータ) (2022-11-29T07:22:49Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Data-driven Real-time Short-term Prediction of Air Quality: Comparison
of ES, ARIMA, and LSTM [0.0]
歴史的データに基づく空気質の予測には,データ駆動方式を用いる。
予測精度と時間的複雑さを考慮して, 短時間の大気汚染予測ESは, ARIMAやLSTMよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-16T09:37:08Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
以前の研究は、地上モニターや気象データから収集した汚染物質濃度を長期予測のモデルに頼っていた。
本研究では,主要な検索エンジンからほぼリアルタイムで公開されているWeb検索データを用いて,観測された汚染レベルを推定するモデルを開発し,検証することを目的とする。
従来型の教師付き分類法と最先端の深層学習法を併用して,米国の都市レベルで大気汚染レベルの上昇を検出する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2022-11-09T23:56:35Z) - Using Machine Learning to Predict Air Quality Index in New Delhi [0.0]
各種汚染物質のレベルと大気質指標の予測には,SVRモデルを用いる。
このモデルは、二酸化炭素、一酸化炭素、二酸化窒素、粒子状物質2.5、地上レベルのオゾンなどの様々な汚染物質を、精度93.4%で予測する。
論文 参考訳(メタデータ) (2021-12-10T00:20:05Z) - Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from
Multiple Data Sources [17.330234783027855]
毎日10kmの空間解像度のPM2.5データは、私たちの最初のほぼリアルタイム製品です。
2000年以降のPM2.5データの長期記録は、政策評価や健康影響研究もサポートする。
論文 参考訳(メタデータ) (2021-03-11T08:17:36Z) - Sub-Seasonal Climate Forecasting via Machine Learning: Challenges,
Analysis, and Advances [44.28969320556008]
サブシーズン気候予報(SSF)は、気温や降水量などの主要な気候変数を2週間から2ヶ月の時間スケールで予測することに焦点を当てている。
本稿では,米国本土におけるSSFのための機械学習(ML)アプローチについて検討する。
論文 参考訳(メタデータ) (2020-06-14T18:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。