Evaluation of Time Series Forecasting Models for Estimation of PM2.5
Levels in Air
- URL: http://arxiv.org/abs/2104.03226v1
- Date: Wed, 7 Apr 2021 16:24:39 GMT
- Title: Evaluation of Time Series Forecasting Models for Estimation of PM2.5
Levels in Air
- Authors: Satvik Garg and Himanshu Jindal
- Abstract summary: The study adopts ARIMA, FBProphet, and deep learning models such as LSTM, 1D CNN, to estimate the concentration of PM2.5 in the environment.
Our predicted results convey that all adopted methods give comparative outcomes in terms of average root mean squared error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air contamination in urban areas has risen consistently over the past few
years. Due to expanding industrialization and increasing concentration of toxic
gases in the climate, the air is getting more poisonous step by step at an
alarming rate. Since the arrival of the Coronavirus pandemic, it is getting
more critical to lessen air contamination to reduce its impact. The specialists
and environmentalists are making a valiant effort to gauge air contamination
levels. However, its genuinely unpredictable to mimic subatomic communication
in the air, which brings about off base outcomes. There has been an ascent in
using machine learning and deep learning models to foresee the results on time
series data. This study adopts ARIMA, FBProphet, and deep learning models such
as LSTM, 1D CNN, to estimate the concentration of PM2.5 in the environment. Our
predicted results convey that all adopted methods give comparative outcomes in
terms of average root mean squared error. However, the LSTM outperforms all
other models with reference to mean absolute percentage error.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
The objective is to predict air pollution exposures for study subjects at locations without data in order to optimize our ability to learn about health effects of air pollution.
We tackle these challenges in two datasets: sulfur (S) from regulatory United States national PM2.5 sub-species data and ultrafine particles (UFP) from a new Seattle-area traffic-related air pollution dataset.
Our key contribution is a leave-one-out approach for variable importance that leads to interpretable and comparable measures for a broad class of models.
arXiv Detail & Related papers (2024-06-04T05:51:36Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
This paper looks at the causal inference task of treatment effect estimation, where the outcome of interest is recorded in high-dimensional observations.
We compare 6 480 models fine-tuned from state-of-the-art visual backbones, and find that the sampling and modeling choices significantly affect the accuracy of the causal estimate.
Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones.
arXiv Detail & Related papers (2024-05-27T13:26:34Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Data-driven Real-time Short-term Prediction of Air Quality: Comparison
of ES, ARIMA, and LSTM [0.0]
We use a data-driven approach to predict air quality based on historical data.
Considering prediction accuracy and time complexity, our experiments reveal that for short-term air pollution prediction ES performs better than ARIMA and LSTM.
arXiv Detail & Related papers (2022-11-16T09:37:08Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
Prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting.
This study aims to develop and validate models to nowcast the observed pollution levels using Web search data, which is publicly available in near real-time from major search engines.
We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level.
arXiv Detail & Related papers (2022-11-09T23:56:35Z) - Using Machine Learning to Predict Air Quality Index in New Delhi [0.0]
We use a Support Vector Regression (SVR) model to forecast the levels of various pollutants and the air quality index.
The model predicts levels of various pollutants, like, sulfur dioxide, carbon monoxide, nitrogen dioxide, particulate matter 2.5, and ground-level ozone, at an accuracy of 93.4 percent.
arXiv Detail & Related papers (2021-12-10T00:20:05Z) - Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from
Multiple Data Sources [17.330234783027855]
Daily full-coverage PM2.5 data at a spatial resolution of 10 km is our first near real-time product.
Long-term records of PM2.5 data since 2000 will also support policy assessments and health impact studies.
arXiv Detail & Related papers (2021-03-11T08:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.