論文の概要: Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization
- arxiv url: http://arxiv.org/abs/2104.03343v1
- Date: Wed, 7 Apr 2021 18:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 04:00:35.691835
- Title: Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization
- Title(参考訳): Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization
- Authors: Rezvaneh Rezapour and Sravana Reddy and Ann Clifton and Rosie Jones
- Abstract要約: この挑戦の目的は、ポッドキャストエピソードに存在する重要な情報を含む短く有益な要約を生成することでした。
ジャンルと名前付きエンティティを明確に考慮した2つの要約モデルを提案する。
我々のモデルは抽象的であり、創造者が提供する記述を根拠となる真実の要約として利用している。
- 参考スコア(独自算出の注目度): 4.456617185465443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper contains the description of our submissions to the summarization
task of the Podcast Track in TREC (the Text REtrieval Conference) 2020. The
goal of this challenge was to generate short, informative summaries that
contain the key information present in a podcast episode using automatically
generated transcripts of the podcast audio. Since podcasts vary with respect to
their genre, topic, and granularity of information, we propose two
summarization models that explicitly take genre and named entities into
consideration in order to generate summaries appropriate to the style of the
podcasts. Our models are abstractive, and supervised using creator-provided
descriptions as ground truth summaries. The results of the submitted summaries
show that our best model achieves an aggregate quality score of 1.58 in
comparison to the creator descriptions and a baseline abstractive system which
both score 1.49 (an improvement of 9%) as assessed by human evaluators.
- Abstract(参考訳): 本稿では,trec(the text retrieval conference)2020におけるポッドキャストトラックの要約タスクへの提案内容について述べる。
この課題の目標は、ポッドキャスト音声の書き起こしを自動生成することで、ポッドキャストエピソードに存在する重要な情報を含む短くて情報的な要約を生成することである。
ポッドキャストはジャンル,話題,情報の粒度によって異なるため,ポッドキャストのスタイルに適した要約を生成するために,ジャンルや名前のエンティティを明確に考慮した2つの要約モデルを提案する。
我々のモデルは抽象的であり、創造者が提供する記述を根拠となる真実の要約として利用している。
提案したサマリーの結果から,評価対象者の評価値が1.49点(9%改善)となるベースライン抽象システムと,クリエーター記述と比較すると,ベストモデルでは1.58点の総合的品質スコアが得られた。
関連論文リスト
- Movie101v2: Improved Movie Narration Benchmark [53.54176725112229]
映像の自動ナレーションは、視覚障害者を支援するために、映像に合わせたプロット記述を生成することを目的としている。
映画ナレーションに特化して設計されたデータ品質を向上した大規模バイリンガルデータセットであるMovie101v2を紹介する。
新しいベンチマークに基づいて,GPT-4Vを含む多数の視覚言語モデルをベースライン化し,ナレーション生成における課題の詳細な分析を行う。
論文 参考訳(メタデータ) (2024-04-20T13:15:27Z) - AugSumm: towards generalizable speech summarization using synthetic
labels from large language model [61.73741195292997]
抽象音声要約(SSUM)は、音声から人間に似た要約を生成することを目的としている。
従来のSSUMモデルは、主に、人間による注釈付き決定論的要約(英語版)を用いて訓練され、評価されている。
AugSummは,人間のアノテータが拡張要約を生成するためのプロキシとして,大規模言語モデル(LLM)を利用する手法である。
論文 参考訳(メタデータ) (2024-01-10T18:39:46Z) - Fine-grained Audible Video Description [61.81122862375985]
FAVDBench(きめのきめ細かな映像記述ベンチマーク)を構築した。
各ビデオクリップについて、まずビデオの1文要約を行い、次に、視覚的詳細を記述した4~6文と、最後に1~2つの音声関連記述を示す。
細かなビデオ記述を利用することで、キャプションよりも複雑なビデオが作成できることを実証する。
論文 参考訳(メタデータ) (2023-03-27T22:03:48Z) - Towards Abstractive Grounded Summarization of Podcast Transcripts [33.268079036601634]
ポッドキャストの書き起こしの要約は、コンテンツ提供者と消費者の両方にとって実用的な利益である。
これは、コンシューマーがポッドキャストを聴くかどうかを素早く判断し、要約を書くためのコンテンツプロバイダの負荷を減らすのに役立つ。
しかし、ポッドキャストの要約は、入力に関する事実上の矛盾を含む重大な課題に直面している。
論文 参考訳(メタデータ) (2022-03-22T02:44:39Z) - StreamHover: Livestream Transcript Summarization and Annotation [54.41877742041611]
ライブストリームの書き起こしを注釈付けして要約するフレームワークであるStreamHoverを紹介します。
合計500時間以上のビデオに抽出的要約と抽象的要約を併用したベンチマークデータセットは,既存の注釈付きコーパスよりもはるかに大きい。
我々のモデルはより一般化され、強力なベースラインよりも性能が向上することを示す。
論文 参考訳(メタデータ) (2021-09-11T02:19:37Z) - SummScreen: A Dataset for Abstractive Screenplay Summarization [52.56760815805357]
SummScreenは、テレビシリーズトランスクリプトと人間の書かれたリキャップのペアで構成されたデータセットです。
プロットの詳細はしばしば文字対話で間接的に表現され、書き起こしの全体にわたって散らばることがある。
キャラクタはテレビシリーズの基本であるため,2つのエンティティ中心評価指標も提案する。
論文 参考訳(メタデータ) (2021-04-14T19:37:40Z) - CUED_speech at TREC 2020 Podcast Summarisation Track [1.776746672434207]
ポッドキャストのエピソードが書き起こされ、そのゴールはコンテンツの中で最も重要な情報をキャプチャーする要約を生成することである。
提案手法は,(1)階層的モデルに着目して書き起こし中の冗長文や情報の少ない文をフィルタリングすること,(2)シーケンスレベルの報酬関数を用いたPodcastデータに,最先端のテキスト要約システム(BART)を微調整すること,の2段階からなる。
本システムは,TREC 2020 Podcast TrackにおけるSpotify Podcast Summarisation Challengeで人的および自動評価で優勝した。
論文 参考訳(メタデータ) (2020-12-04T11:32:55Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
ポッドキャストの要約は他のデータフォーマットの要約とは異なる。
文選択とSeq2seq学習という2段階の手法を提案する。
提案手法は,ROUGEに基づく測定と人的評価の両面で有望な結果をもたらす。
論文 参考訳(メタデータ) (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
テキストドメインからのガイダンスを用いて,ポッドキャストの要約を自動的に作成する手法を提案する。
このタスクにはデータセットが不足しているため、内部データセットをキュレートし、データ拡張の効果的なスキームを見つけ、アノテータから要約を集めるためのプロトコルを設計する。
本手法は, ROUGE-F(1/2/L) スコア0.63/0.53/0.63をデータセット上で達成する。
論文 参考訳(メタデータ) (2020-09-22T04:49:33Z) - A Baseline Analysis for Podcast Abstractive Summarization [18.35061145103997]
本稿では,Spotify Podcastデータセットを用いたポッドキャスト要約のベースライン解析について述べる。
研究者が現在の最先端の事前訓練モデルを理解するのを助け、より良いモデルを作るための基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2020-08-24T18:38:42Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。