論文の概要: A Baseline Analysis for Podcast Abstractive Summarization
- arxiv url: http://arxiv.org/abs/2008.10648v2
- Date: Wed, 26 Aug 2020 01:32:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 11:49:12.065680
- Title: A Baseline Analysis for Podcast Abstractive Summarization
- Title(参考訳): ポッドキャスト抽象要約のためのベースライン解析
- Authors: Chujie Zheng, Harry Jiannan Wang, Kunpeng Zhang, Ling Fan
- Abstract要約: 本稿では,Spotify Podcastデータセットを用いたポッドキャスト要約のベースライン解析について述べる。
研究者が現在の最先端の事前訓練モデルを理解するのを助け、より良いモデルを作るための基盤を構築することを目的としている。
- 参考スコア(独自算出の注目度): 18.35061145103997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Podcast summary, an important factor affecting end-users' listening
decisions, has often been considered a critical feature in podcast
recommendation systems, as well as many downstream applications. Existing
abstractive summarization approaches are mainly built on fine-tuned models on
professionally edited texts such as CNN and DailyMail news. Different from
news, podcasts are often longer, more colloquial and conversational, and
noisier with contents on commercials and sponsorship, which makes automatic
podcast summarization extremely challenging. This paper presents a baseline
analysis of podcast summarization using the Spotify Podcast Dataset provided by
TREC 2020. It aims to help researchers understand current state-of-the-art
pre-trained models and hence build a foundation for creating better models.
- Abstract(参考訳): ポッドキャスト要約(podcast summary)は、エンドユーザのリスニング判断に影響を与える重要な要素であり、ポッドキャストレコメンデーションシステムや多くのダウンストリームアプリケーションにおいて重要な機能と見なされている。
既存の抽象要約アプローチは、主にcnnやdailymail newsのような専門的に編集されたテキストの微調整されたモデルに基づいている。
ニュースと異なり、ポッドキャストはより長く、より口語的、会話的であり、コマーシャルやスポンサーシップの内容にうるさいため、ポッドキャストの自動要約は非常に難しい。
本稿では,TREC 2020が提供するSpotify Podcast Datasetを用いて,ポッドキャスト要約のベースライン解析を行う。
研究者たちは、最先端の事前訓練モデルを理解して、より良いモデルを作るための基盤を構築することを目指している。
関連論文リスト
- Mapping the Podcast Ecosystem with the Structured Podcast Research Corpus [23.70786221902932]
私たちは2020年5月から6月にかけて、公開RSSフィードを通じて利用可能な110万以上のポッドキャストの大規模なデータセットを紹介します。
このデータはテキストに限らず、オーディオ機能や370Kエピソードのサブセットのスピーカー・ターンも含んでいる。
このデータを用いて、このポピュラーなインパクトのある媒体の内容、構造、応答性に関する基礎的な調査を行う。
論文 参考訳(メタデータ) (2024-11-12T15:56:48Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization [70.13218512896032]
テキストプロンプトから音声を生成することは、音楽や映画産業におけるそのようなプロセスの重要な側面である。
我々の仮説は、これらのオーディオ生成の側面が、限られたデータの存在下でのオーディオ生成性能をどのように改善するかに焦点を当てている。
我々は、各プロンプトが勝者の音声出力と、拡散モデルが学習するための敗者音声出力を持つ選好データセットを合成的に作成する。
論文 参考訳(メタデータ) (2024-04-15T17:31:22Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
AIR-Benchは,Large Audio-Language Models (LALM) の様々な種類の音声信号を理解し,テキスト形式で人間と対話する能力を評価する最初のベンチマークである。
その結果, GPT-4による評価と人間による評価との間には高い一貫性が認められた。
論文 参考訳(メタデータ) (2024-02-12T15:41:22Z) - A Survey on Audio Diffusion Models: Text To Speech Synthesis and
Enhancement in Generative AI [64.71397830291838]
生成AIは様々な分野で印象的な性能を示しており、音声合成は興味深い方向である。
拡散モデルを最も一般的な生成モデルとし、テキストから音声への拡張と音声への拡張という2つのアクティブなタスクを試みている。
本研究は,既存の調査を補完する音声拡散モデルに関する調査を行う。
論文 参考訳(メタデータ) (2023-03-23T15:17:15Z) - Topic Modeling on Podcast Short-Text Metadata [0.9539495585692009]
短いテキストのモデリング技術を用いて,ポッドキャストのメタデータやタイトル,記述から関連トピックを発見できる可能性を評価する。
非負行列因子化モデリングフレームワークにおいて、しばしばポッドキャストメタデータに現れる名前付きエンティティ(NE)に対する新しい戦略を提案する。
SpotifyとiTunesとDeezerの既存の2つのデータセットに対する実験により、提案したドキュメント表現であるNEiCEがベースラインの一貫性を改善していることが示された。
論文 参考訳(メタデータ) (2022-01-12T11:07:05Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Spotify at TREC 2020: Genre-Aware Abstractive Podcast Summarization [4.456617185465443]
この挑戦の目的は、ポッドキャストエピソードに存在する重要な情報を含む短く有益な要約を生成することでした。
ジャンルと名前付きエンティティを明確に考慮した2つの要約モデルを提案する。
我々のモデルは抽象的であり、創造者が提供する記述を根拠となる真実の要約として利用している。
論文 参考訳(メタデータ) (2021-04-07T18:27:28Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
ポッドキャストの要約は他のデータフォーマットの要約とは異なる。
文選択とSeq2seq学習という2段階の手法を提案する。
提案手法は,ROUGEに基づく測定と人的評価の両面で有望な結果をもたらす。
論文 参考訳(メタデータ) (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
テキストドメインからのガイダンスを用いて,ポッドキャストの要約を自動的に作成する手法を提案する。
このタスクにはデータセットが不足しているため、内部データセットをキュレートし、データ拡張の効果的なスキームを見つけ、アノテータから要約を集めるためのプロトコルを設計する。
本手法は, ROUGE-F(1/2/L) スコア0.63/0.53/0.63をデータセット上で達成する。
論文 参考訳(メタデータ) (2020-09-22T04:49:33Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。