論文の概要: Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT
- arxiv url: http://arxiv.org/abs/2104.03466v1
- Date: Thu, 8 Apr 2021 01:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 12:49:55.660029
- Title: Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT
- Title(参考訳): IoTにおける多変量時系列異常検出のための変換器を用いたグラフ構造学習
- Authors: Zekai Chen, Dingshuo Chen, Zixuan Yuan, Xiuzhen Cheng, Xiao Zhang
- Abstract要約: 本研究は,グラフ構造とグラフ畳み込みを自動的に学習することにより,多変量時系列異常検出のための新しいフレームワークGTAを提案する。
また,グラフノード間の異常情報フローをモデル化するために,影響伝播畳み込みという新しいグラフ畳み込みを考案した。
4つの公開異常検出ベンチマークの実験は、我々のアプローチが他の最先端技術よりも優れていることをさらに証明している。
- 参考スコア(独自算出の注目度): 11.480824844205864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world IoT systems comprising various internet-connected sensory
devices generate substantial amounts of multivariate time series data.
Meanwhile, those critical IoT infrastructures, such as smart power grids and
water distribution networks, are often targets of cyber-attacks, making anomaly
detection of high research value. However, considering the complex topological
and nonlinear dependencies that are initially unknown among sensors, modeling
such relatedness is inevitable for any efficient and accurate anomaly detection
system. Additionally, due to multivariate time series' temporal dependency and
stochasticity, their anomaly detection remains a big challenge. This work
proposed a novel framework, namely GTA, for multivariate time series anomaly
detection by automatically learning a graph structure followed by the graph
convolution and modeling the temporal dependency through a Transformer-based
architecture. The core idea of learning graph structure is called the
connection learning policy based on the Gumbel-softmax sampling strategy to
learn bi-directed associations among sensors directly. We also devised a novel
graph convolution named Influence Propagation convolution to model the anomaly
information flow between graph nodes. Moreover, we proposed a multi-branch
attention mechanism to substitute for original multi-head self-attention to
overcome the quadratic complexity challenge. The extensive experiments on four
public anomaly detection benchmarks further demonstrate our approach's
superiority over other state-of-the-arts.
- Abstract(参考訳): 様々なインターネットに接続されたセンサーデバイスを含む多くの現実世界のiotシステムは、大量の多変量時系列データを生成する。
一方、スマート電力グリッドや配水ネットワークといった重要なIoTインフラストラクチャは、しばしばサイバー攻撃の標的であり、研究価値を異常に検出する。
しかし,センサ間の複雑なトポロジカルおよび非線形依存関係を考えると,そのような関係性をモデル化することは,効率的かつ正確な異常検出システムでは避けられない。
さらに、多変量時系列の時間依存性と確率性のため、異常検出は依然として大きな課題である。
本研究は,グラフ構造を自動学習し,グラフ畳み込みと時間依存性のモデル化を行い,多変量時系列異常検出のための新しいフレームワークであるgtaを提案した。
グラフ構造学習の基本的な考え方は、Gumbel-softmaxサンプリング戦略に基づいて、センサ間の双方向関連を直接学習する接続学習ポリシーと呼ばれる。
また,グラフノード間の異常情報フローをモデル化するために,影響伝播畳み込みという新しいグラフ畳み込みを考案した。
さらに,2次複雑性を克服するために,従来のマルチヘッド自己注意の代わりにマルチブランチアテンション機構を提案する。
4つの公開異常検出ベンチマークに関する広範な実験は、我々のアプローチが他の最先端技術よりも優れていることを示している。
関連論文リスト
- Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
多次元時系列異常検出技術は、航空宇宙、水処理、クラウドサービスプロバイダなど、多くの分野において重要な役割を果たす。
高次元および複雑なデータセットにおいて、効果的かつ正確な異常検出を行うことがますます困難になっている。
本稿では,複数変数間の高次マルチホップ相関を明示的に捉えるハイパーグラフに基づく時間グラフ畳み込みネットワークモデルSTGCN_Hyperを提案する。
我々のモデルはデータ中のマルチスケール時系列の特徴と特徴間の依存関係を柔軟に学習し、異常検出の精度、リコール、F1スコアで既存のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-10-29T17:19:18Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
多変量時系列データにおける異常検出のためのアテンションベースニューラルネットワークフレームワーク(CAN)を提案する。
センサ間の関係と時間的依存関係をキャプチャするために、グローバルローカルグラフに基づく畳み込みニューラルネットワークを時間的自己認識モジュールに統合する。
論文 参考訳(メタデータ) (2023-06-12T13:42:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFIは自動的に多変量特徴相互作用グラフを構築し、グラフ畳み込みニューラルネットワークを使用して高次特徴相互作用を実現する。
3つの公開データセットの実験は、最先端のアプローチと比較して、我々のフレームワークの優位性を示している。
論文 参考訳(メタデータ) (2021-06-11T04:57:03Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。