Parametric-resonance entangling gates with a tunable coupler
- URL: http://arxiv.org/abs/2104.03511v2
- Date: Tue, 7 Sep 2021 05:20:53 GMT
- Title: Parametric-resonance entangling gates with a tunable coupler
- Authors: Eyob A. Sete, Nicolas Didier, Angela Q. Chen, Shobhan Kulshreshtha,
Riccardo Manenti, and Stefano Poletto
- Abstract summary: We realize a parametric-resonance gate, which is activated by bringing the average frequency of the modulated qubit in resonance with a static-frequency qubit.
We show that this approach is compatible with tunable coupler architectures, which reduce always-on residual couplings.
The flexibility in activating parametric-resonance gates combined with a tunable coupler architecture provides a pathway for building large-scale quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity parametric gates have been demonstrated with superconducting
qubits via rf flux modulation of the qubit frequency. The modulation however
leads to renormalization of the bare qubit-qubit coupling, thereby reducing the
gate speed. Here, we realize a parametric-resonance gate, which is activated by
bringing the average frequency of the modulated qubit in resonance with a
static-frequency qubit while approximately retaining the bare qubit-qubit
coupling. The activation of parametric-resonance gates does not depend on the
frequency of modulation, allowing us to choose the modulation frequencies and
avoid frequency collisions. Moreover, we show that this approach is compatible
with tunable coupler architectures, which reduce always-on residual couplings.
Using these techniques, we demonstrate iSWAP and CZ gates between two qubits
coupled via a tunable coupler with average process fidelities as high as
$99.3\%$ and $97.9\%$, respectively. The flexibility in activating
parametric-resonance gates combined with a tunable coupler architecture
provides a pathway for building large-scale quantum computers.
Related papers
- Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Coupler microwave-activated controlled phase gate on fluxonium qubits [32.73124984242397]
A tunable coupler typically includes a nonlinear element, such as a SQUID, which is used to tune the resonance frequency of an LC circuit connecting two qubits.
Here we propose a complimentary approach where instead of tuning the resonance frequency of the tunable coupler by applying a quasistatic control signal, we excite by microwave the degree of freedom associated with the coupler itself.
arXiv Detail & Related papers (2023-02-20T07:51:04Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Coupling two charge qubits via a superconducting resonator operating in
the resonant and dispersive regimes [5.526775342940154]
We describe a new type of charge qubit formed by an electron confined in a triple-quantum-dot system.
We present the form for the long-range dipolar coupling between the charge qubit and a superconducting resonator.
We find that the fidelity for the iSWAP gate can reach fidelity higher than 99% for the noise level typical in experiments.
arXiv Detail & Related papers (2020-12-28T07:49:41Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Implementation of Conditional-Phase Gates based on tunable
ZZ-Interactions [0.0]
In superconducting circuits two-qubit gates are typically based either on RF-controlled interactions or on the in-situ tunability of qubitbility.
We present an alternative approach using a tunable cross-Kerr-type ZZ-interaction between two qubits, which we realize by a flux-tunable coupler.
We control the ZZ-coupling rate over three orders of magnitude to perform a rapid element (38 ns), high-contrast, low leakage (0.14 conditional-phase CZ gate with a fidelity of 97.9 % without relying on the resonant interaction with a non-computational state
arXiv Detail & Related papers (2020-05-18T16:37:32Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit [0.0]
We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
arXiv Detail & Related papers (2020-03-19T02:26:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.