Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit
- URL: http://arxiv.org/abs/2003.08542v3
- Date: Fri, 28 Aug 2020 03:49:49 GMT
- Title: Error analysis in suppression of unwanted qubit interactions for a
parametric gate in a tunable superconducting circuit
- Authors: X.Y. Han, T.Q. Cai, X.G. Li, Y.K. Wu, Y.W. Ma, Y.L. Ma, J.H. Wang,
H.Y. Zhang, Y.P. Song, and L.M. Duan
- Abstract summary: We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable coupler.
We implement the twoqubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange interaction between computational qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally demonstrate a parametric iSWAP gate in a superconducting
circuit based on a tunable coupler for achieving a continuous tunability to
eliminate unwanted qubit interactions. We implement the twoqubit iSWAP gate by
applying a fast-flux bias modulation pulse on the coupler to turn on parametric
exchange interaction between computational qubits. The controllable interaction
can provide an extra degree of freedom to verify the optimal condition for
constructing the parametric gate. Aiming to fully investigate error sources of
the two-qubit gates, we perform quantum process tomography measurements and
numerical simulations as varying static ZZ coupling strength. We quantitatively
calculate the dynamic ZZ coupling parasitizing in two-qubit gate operation, and
extract the particular gate error from the decoherence, dynamic ZZ coupling and
high-order oscillation terms. Our results reveal that the main gate error comes
from the decoherence, while the increase in the dynamic ZZ coupling and
high-order oscillation error degrades the parametric gate performance. This
approach, which has not yet been previously explored, provides a guiding
principle to improve gate fidelity of parametric iSWAP gate by suppression of
the unwanted qubit interactions. This controllable interaction, together with
the parametric modulation technique, is desirable for crosstalk free multiqubit
quantum circuits and quantum simulation applications.
Related papers
- Charge-parity switching effects and optimisation of transmon-qubit design parameters [0.0]
We identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling.
A charge-parity switch can be the dominant quasiparticle-related error source of a two-qubit gate.
We present a performance metric for quantum circuit execution.
arXiv Detail & Related papers (2023-09-29T12:05:27Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler
Architecture with Novel Parameter Regions [0.0]
This paper focuses on the gate error sources and the related physical mechanism of ZZ parasitic couplings.
Our study opens up new opportunities to implement high-fidelity two-qubit gates in superconducting coupler architecture.
arXiv Detail & Related papers (2021-05-27T16:59:02Z) - Parametric-resonance entangling gates with a tunable coupler [0.0]
We realize a parametric-resonance gate, which is activated by bringing the average frequency of the modulated qubit in resonance with a static-frequency qubit.
We show that this approach is compatible with tunable coupler architectures, which reduce always-on residual couplings.
The flexibility in activating parametric-resonance gates combined with a tunable coupler architecture provides a pathway for building large-scale quantum computers.
arXiv Detail & Related papers (2021-04-08T05:00:20Z) - Strong parametric dispersive shifts in a statically decoupled
multi-qubit cavity QED system [0.4915375958667782]
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing.
Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID.
We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically.
arXiv Detail & Related papers (2021-03-16T18:46:57Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.