Post-Hoc Domain Adaptation via Guided Data Homogenization
- URL: http://arxiv.org/abs/2104.03624v1
- Date: Thu, 8 Apr 2021 09:18:48 GMT
- Title: Post-Hoc Domain Adaptation via Guided Data Homogenization
- Authors: Kurt Willis, Luis Oala
- Abstract summary: We propose to deal with changes in the data distribution via guided data homogenization.
This approach makes use of information about the training data contained implicitly in the deep learning model to learn a domain transfer function.
We demonstrate the potential of data homogenization through experiments on the CIFAR-10 and MNIST data sets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Addressing shifts in data distributions is an important prerequisite for the
deployment of deep learning models to real-world settings. A general approach
to this problem involves the adjustment of models to a new domain through
transfer learning. However, in many cases, this is not applicable in a post-hoc
manner to deployed models and further parameter adjustments jeopardize safety
certifications that were established beforehand. In such a context, we propose
to deal with changes in the data distribution via guided data homogenization
which shifts the burden of adaptation from the model to the data. This approach
makes use of information about the training data contained implicitly in the
deep learning model to learn a domain transfer function. This allows for a
targeted deployment of models to unknown scenarios without changing the model
itself. We demonstrate the potential of data homogenization through experiments
on the CIFAR-10 and MNIST data sets.
Related papers
- Optimal Classification under Performative Distribution Shift [13.508249764979075]
We propose a novel view in which performative effects are modelled as push-forward measures.
We prove the convexity of the performative risk under a new set of assumptions.
We also establish a connection with adversarially robust classification by reformulating the minimization of the performative risk as a min-max variational problem.
arXiv Detail & Related papers (2024-11-04T12:20:13Z) - Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization [49.1574468325115]
Training machine learning models based on neural networks requires large datasets, which may contain sensitive information.
Differentially private SGD [DP-SGD] requires the modification of the standard gradient descent [SGD] algorithm for training new models.
A novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
arXiv Detail & Related papers (2024-09-25T17:59:32Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - How to Learn when Data Gradually Reacts to Your Model [10.074466859579571]
We propose a new algorithm, Stateful Performative Gradient Descent (Stateful PerfGD), for minimizing the performative loss even in the presence of these effects.
Our experiments confirm that Stateful PerfGD substantially outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-12-13T22:05:26Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications.
It builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time.
This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information.
It is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime
arXiv Detail & Related papers (2021-09-03T14:29:20Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.