論文の概要: DeepProg: A Transformer-based Framework for Predicting Disease Prognosis
- arxiv url: http://arxiv.org/abs/2104.03642v1
- Date: Thu, 8 Apr 2021 09:53:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-09 21:36:40.920712
- Title: DeepProg: A Transformer-based Framework for Predicting Disease Prognosis
- Title(参考訳): DeepProg: 疾患予後を予測するトランスフォーマーベースのフレームワーク
- Authors: Huy Hoang Nguyen, Simo Saarakkala, Matthew B. Blaschko, Aleksei
Tiulpin
- Abstract要約: 本稿では,一対多のシーケンス予測問題として,予後予測タスクを定式化する。
放射線医と一般開業医の2人のエージェントによる臨床意思決定プロセスに触発され,汎用的なエンドツーエンドトランスフォーマーベースのフレームワークを提案する。
本手法の有効性と妥当性は,膝関節の構造的骨関節変化の進展を予測するために,合成データ上に示される。
- 参考スコア(独自算出の注目度): 19.673447448533743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A vast majority of deep learning methods are built to automate diagnostic
tasks. However, in clinical practice, a more advanced question is how to
predict the course of a disease. Current methods for this problem are
complicated, and often require domain knowledge, making them difficult for
practitioners to use. In this paper, we formulate the prognosis prediction task
as a one-to-many sequence prediction problem. Inspired by a clinical decision
making process with two agents -- a radiologist and a general practitioner --
we propose a generic end-to-end transformer-based framework to estimate disease
prognosis from images and auxiliary data. The effectiveness and validation of
the developed method are shown on synthetic data, and in the task of predicting
the development of structural osteoarthritic changes in knee joints.
- Abstract(参考訳): 診断タスクを自動化するために、ディープラーニングメソッドの大部分が構築されている。
しかし、臨床実践において、より高度な疑問は、疾患の経過を予測する方法である。
この問題の現在の方法は複雑で、しばしばドメイン知識を必要とするため、実践者が使うのが難しい。
本稿では,一対多のシーケンス予測問題として予後予測タスクを定式化する。
放射線医と一般医の2人のエージェントによる臨床的意思決定プロセスに触発され,画像と補助データから疾患の予後を推定する汎用的なエンド・ツー・エンド・トランスフォーマー・ベースの枠組みを提案する。
本手法の有効性と妥当性を合成データに示し, 膝関節の構造的変形性変化の予測について検討した。
関連論文リスト
- Scheduling with Predictions [0.0]
現代の学習技術により、医療画像の異常を数分で検出できるようになった。
機械による診断は、放射線技師による人間の画像のレビューを確実に置き換えることはできない。
本研究では,このシナリオを学習強化オンラインスケジューリング問題として定式化することによって研究する。
論文 参考訳(メタデータ) (2022-12-20T17:10:06Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Clinically-Inspired Multi-Agent Transformers for Disease Trajectory
Forecasting from Multimodal Data [22.38347928594832]
予測問題を一対多の予測問題として定式化する。
2つのエージェントによる臨床的意思決定プロセスにインスパイアされ、2つのトランスフォーマーベースコンポーネントによる予後を予測する。
本研究は, 変形性膝関節症の発生を予測し, 生のマルチモーダルデータから直接アルツハイマー病の臨床像を予測するためのアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-25T10:16:42Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
医療における診断技術の急速な発展は、医師が日常的に発生する異質で相補的なデータを扱い、統合することの要求が高まっている。
近年のマルチモーダルディープラーニング技術の発展に伴い、我々はどのようにして多モーダル情報を抽出して集約し、究極的にはより客観的で定量的なコンピュータ支援の臨床的意思決定を提供するかという重要な疑問に、ますます多くの努力が注がれている。
本総説では,(1)現在のマルチモーダル・ラーニングの概要,(2)マルチモーダル・フュージョン法の要約,(3)パフォーマンスの議論,(4)疾患診断と予後の応用,(5)課題と将来について概説する。
論文 参考訳(メタデータ) (2022-03-25T18:50:03Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
頭頸部腫瘍の予後を予測するために,深層マルチタスクロジスティック回帰(MTLR),コックス比重ハザード(CoxPH),CNNモデルを組み込んだマルチモーダルネットワークを提案する。
提案手法は,HECKTORテストセットのC-インデックス0.72を達成し,HECKTORチャレンジの予後タスクにおける第1位を救った。
論文 参考訳(メタデータ) (2022-02-25T07:50:59Z) - Survival-oriented embeddings for improving accessibility to complex data
structures [2.1847940931069605]
本稿では、生存分析の文脈における深層ニューラルネットワークの直接解釈を支援するハザード規則化変分オートエンコーダを提案する。
肝腫瘍患者の腹部CT検査と生存時間について検討した。
論文 参考訳(メタデータ) (2021-10-21T17:38:08Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。