論文の概要: Safe AI for health and beyond -- Monitoring to transform a health
service
- arxiv url: http://arxiv.org/abs/2303.01513v3
- Date: Tue, 6 Jun 2023 12:02:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 20:35:49.791812
- Title: Safe AI for health and beyond -- Monitoring to transform a health
service
- Title(参考訳): 健康とそれ以上の安全AI -- 医療サービスを変革するためのモニタリング
- Authors: Mahed Abroshan, Michael Burkhart, Oscar Giles, Sam Greenbury, Zoe
Kourtzi, Jack Roberts, Mihaela van der Schaar, Jannetta S Steyn, Alan Wilson,
May Yong
- Abstract要約: 機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
- 参考スコア(独自算出の注目度): 51.8524501805308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning techniques are effective for building predictive models
because they identify patterns in large datasets. Development of a model for
complex real-life problems often stop at the point of publication, proof of
concept or when made accessible through some mode of deployment. However, a
model in the medical domain risks becoming obsolete as patient demographics,
systems and clinical practices change. The maintenance and monitoring of
predictive model performance post-publication is crucial to enable their safe
and effective long-term use. We will assess the infrastructure required to
monitor the outputs of a machine learning algorithm, and present two scenarios
with examples of monitoring and updates of models, firstly on a breast cancer
prognosis model trained on public longitudinal data, and secondly on a
neurodegenerative stratification algorithm that is currently being developed
and tested in clinic.
- Abstract(参考訳): 機械学習技術は、大きなデータセットのパターンを特定するため、予測モデルを構築するのに効果的である。
複雑な実生活問題のモデルの開発は、しばしば出版、概念実証、あるいはある配置方法を通じてアクセス可能になったときに停止する。
しかし、患者人口、システム、臨床実践の変化に伴い、医療領域のモデルが時代遅れになる。
公開後の予測モデルパフォーマンスの維持と監視は、安全かつ効果的な長期使用を可能にするために不可欠である。
我々は、機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価し、モデルの監視と更新の例、第一に、公衆の縦断データに基づいてトレーニングされた乳癌の予後モデル、第二に、現在臨床で開発およびテストされている神経変性成層化アルゴリズムの2つのシナリオを示す。
関連論文リスト
- Membership Inference Attacks Against Time-Series Models [0.8437187555622164]
個人情報を含む時系列データは、特に医療分野において、深刻なプライバシー上の懸念を示す。
時系列モデルにおける既存技術について検討し,季節性に着目した新機能を紹介する。
以上の結果から,MIAによる会員識別の有効性が向上し,医療データアプリケーションにおけるプライバシリスクの理解が向上した。
論文 参考訳(メタデータ) (2024-07-03T07:34:49Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Time-aware Heterogeneous Graph Transformer with Adaptive Attention Merging for Health Event Prediction [6.578298085691462]
本稿では,疾患領域の知識を同化し,薬物と疾患の複雑な関係を解明するための新しい異種グラフ学習モデルを提案する。
2つの医療データセットで評価したところ、予測精度と解釈可能性の両方において顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-04-23T08:01:30Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
本稿では,放射線学AI分類モデルの性能を実際に監視するための新しい手法を提案する。
予測分散と時間安定性という2つの指標を提案し、AIのパフォーマンス変化のプリエンプティブアラートに使用する。
論文 参考訳(メタデータ) (2023-11-24T06:29:04Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Distillation to Enhance the Portability of Risk Models Across
Institutions with Large Patient Claims Database [12.452703677540505]
可読性予測モデルのクロスサイト評価によるモデルポータビリティの実現性について検討する。
再帰型ニューラルネットワークを自己注意で拡張し、専門家の特徴とブレンドして、可読性予測モデルを構築する。
実験の結果、ある機関で訓練・試験されたMLモデルの直接適用は、同一施設で訓練・試験されたMLモデルよりも悪い結果が得られた。
論文 参考訳(メタデータ) (2022-07-06T05:26:32Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
本研究は, 患者の病歴を, 病の時間的シーケンスとして提示し, その埋め込みを教師なしで学習する。
埋め込みスペースには、一般化された患者プロファイルの作成を可能にする人口統計パラメータが含まれている。
このような医療プロファイルモデルのトレーニングは、100万人以上の患者のデータセット上で実施されている。
論文 参考訳(メタデータ) (2021-06-21T13:30:43Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。