DeepProg: A Transformer-based Framework for Predicting Disease Prognosis
- URL: http://arxiv.org/abs/2104.03642v1
- Date: Thu, 8 Apr 2021 09:53:18 GMT
- Title: DeepProg: A Transformer-based Framework for Predicting Disease Prognosis
- Authors: Huy Hoang Nguyen, Simo Saarakkala, Matthew B. Blaschko, Aleksei
Tiulpin
- Abstract summary: In this paper, we formulate the prognosis prediction task as a one-to-many sequence prediction problem.
Inspired by a clinical decision making process with two agents -- a radiologist and a general practitioner, we propose a generic end-to-end transformer-based framework.
The effectiveness and validation of the developed method are shown on synthetic data, and in the task of predicting the development of structural osteoarthritic changes in knee joints.
- Score: 19.673447448533743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A vast majority of deep learning methods are built to automate diagnostic
tasks. However, in clinical practice, a more advanced question is how to
predict the course of a disease. Current methods for this problem are
complicated, and often require domain knowledge, making them difficult for
practitioners to use. In this paper, we formulate the prognosis prediction task
as a one-to-many sequence prediction problem. Inspired by a clinical decision
making process with two agents -- a radiologist and a general practitioner --
we propose a generic end-to-end transformer-based framework to estimate disease
prognosis from images and auxiliary data. The effectiveness and validation of
the developed method are shown on synthetic data, and in the task of predicting
the development of structural osteoarthritic changes in knee joints.
Related papers
- Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Scheduling with Predictions [0.0]
Modern learning techniques have made it possible to detect abnormalities in medical images within minutes.
Machine-assisted diagnoses cannot yet reliably replace human reviews of images by a radiologist.
We study this scenario by formulating it as a learning-augmented online scheduling problem.
arXiv Detail & Related papers (2022-12-20T17:10:06Z) - Clinically-Inspired Multi-Agent Transformers for Disease Trajectory
Forecasting from Multimodal Data [13.766035805437847]
We formulate the prognosis prediction problem as a one-to-many prediction problem.
Inspired by a clinical decision-making process with two agents, we predict prognosis with two transformer-based components.
We show the effectiveness of our approach in predicting the development of structural knee osteoarthritis changes and forecasting Alzheimer's disease clinical status directly from raw multi-modal data.
arXiv Detail & Related papers (2022-10-25T10:16:42Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data produced during routine practice.
With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making?
This review will include the (1) overview of current multi-modal learning, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future
arXiv Detail & Related papers (2022-03-25T18:50:03Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Survival-oriented embeddings for improving accessibility to complex data
structures [2.1847940931069605]
We propose a hazard-regularized variational autoencoder that supports straightforward interpretation of deep neural architectures in the context of survival analysis.
We apply the proposed approach to abdominal CT scans of patients with liver tumors and their corresponding survival times.
arXiv Detail & Related papers (2021-10-21T17:38:08Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.