Robust Self-Ensembling Network for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2104.03765v1
- Date: Thu, 8 Apr 2021 13:33:14 GMT
- Title: Robust Self-Ensembling Network for Hyperspectral Image Classification
- Authors: Yonghao Xu, Bo Du, and Liangpei Zhang
- Abstract summary: We propose a robust self-ensembling network (RSEN) to address this problem.
The proposed RSEN consists of twoworks including a base network and an ensemble network.
We show that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
- Score: 38.84831094095329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has shown the great potential of deep learning algorithms in
the hyperspectral image (HSI) classification task. Nevertheless, training these
models usually requires a large amount of labeled data. Since the collection of
pixel-level annotations for HSI is laborious and time-consuming, developing
algorithms that can yield good performance in the small sample size situation
is of great significance. In this study, we propose a robust self-ensembling
network (RSEN) to address this problem. The proposed RSEN consists of two
subnetworks including a base network and an ensemble network. With the
constraint of both the supervised loss from the labeled data and the
unsupervised loss from the unlabeled data, the base network and the ensemble
network can learn from each other, achieving the self-ensembling mechanism. To
the best of our knowledge, the proposed method is the first attempt to
introduce the self-ensembling technique into the HSI classification task, which
provides a different view on how to utilize the unlabeled data in HSI to assist
the network training. We further propose a novel consistency filter to increase
the robustness of self-ensembling learning. Extensive experiments on three
benchmark HSI datasets demonstrate that the proposed algorithm can yield
competitive performance compared with the state-of-the-art methods.
Related papers
- Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
Anomalous crack region detection is a typical binary semantic segmentation task, which aims to detect pixels representing cracks on pavement surface images automatically by algorithms.
Existing deep learning-based methods have achieved outcoming results on specific public pavement datasets, but the performance would deteriorate dramatically on imbalanced datasets.
We propose a deep learning framework based on conditional Generative Adversarial Networks (cGANs) for the anomalous crack region detection tasks at the pixel level.
arXiv Detail & Related papers (2024-02-03T19:24:40Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Deep Fusion Clustering Network [38.540761683389135]
We propose a Deep Fusion Clustering Network (DFCN) for deep clustering.
In our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder.
Experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2020-12-15T09:37:59Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.