Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss
- URL: http://arxiv.org/abs/2311.12986v2
- Date: Fri, 24 Nov 2023 22:24:50 GMT
- Title: Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss
- Authors: Abdelfateh Bekkaira, Slimane Bellaouar and Slimane Oulad-Naoui
- Abstract summary: We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several natural phenomena and complex systems are often represented as
networks. Discovering their community structure is a fundamental task for
understanding these networks. Many algorithms have been proposed, but recently,
Graph Neural Networks (GNN) have emerged as a compelling approach for enhancing
this task.In this paper, we introduce a simple, efficient, and
clustering-oriented model based on unsupervised \textbf{G}raph Attention
\textbf{A}uto\textbf{E}ncoder for community detection in attributed networks
(GAECO). The proposed model adeptly learns representations from both the
network's topology and attribute information, simultaneously addressing dual
objectives: reconstruction and community discovery. It places a particular
emphasis on discovering compact communities by robustly minimizing clustering
errors. The model employs k-means as an objective function and utilizes a
multi-head Graph Attention Auto-Encoder for decoding the representations.
Experiments conducted on three datasets of attributed networks show that our
method surpasses state-of-the-art algorithms in terms of NMI and ARI.
Additionally, our approach scales effectively with the size of the network,
making it suitable for large-scale applications. The implications of our
findings extend beyond biological network interpretation and social network
analysis, where knowledge of the fundamental community structure is essential.
Related papers
- Node Centrality Approximation For Large Networks Based On Inductive
Graph Neural Networks [2.4012886591705738]
Closeness Centrality (CC) and Betweenness Centrality (BC) are crucial metrics in network analysis.
Their practical implementation on extensive networks remains computationally demanding due to their high time complexity.
We propose the CNCA-IGE model, which is an inductive graph encoder-decoder model designed to rank nodes based on specified CC or BC metrics.
arXiv Detail & Related papers (2024-03-08T01:23:12Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
This work starts with a theoretical framework to reveal the impact of network's width, depth, and graph topology on the over-squashing phenomena in message-passing neural networks.
The work drifts towards, higher-order interactions and multi-relational inductive biases via Topological Neural Networks.
Inspired by Graph Attention Networks, two topological attention networks are proposed: Simplicial and Cell Attention Networks.
arXiv Detail & Related papers (2024-02-10T08:26:06Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - A Unified Framework for Exploratory Learning-Aided Community Detection
Under Topological Uncertainty [16.280950663982107]
META-CODE is a unified framework for detecting overlapping communities in social networks.
It consists of three steps: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community-affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network.
arXiv Detail & Related papers (2023-04-10T10:22:21Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection.
GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning.
We present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process.
arXiv Detail & Related papers (2022-07-14T10:59:39Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Learning low-rank latent mesoscale structures in networks [1.1470070927586016]
We present a new approach for describing low-rank mesoscale structures in networks.
We use several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks.
We show how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted network.
arXiv Detail & Related papers (2021-02-13T18:54:49Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
We propose a graph meta-learning framework -- Graph Prototypical Networks (GPN)
GPN is able to perform textitmeta-learning on an attributed network and derive a highly generalizable model for handling the target classification task.
arXiv Detail & Related papers (2020-06-23T04:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.