Progressive extension of reinforcement learning action dimension for
asymmetric assembly tasks
- URL: http://arxiv.org/abs/2104.04078v1
- Date: Tue, 6 Apr 2021 11:48:54 GMT
- Title: Progressive extension of reinforcement learning action dimension for
asymmetric assembly tasks
- Authors: Yuhang Gai, Jiuming Guo, Dan Wu, Ken Chen
- Abstract summary: In this paper, a progressive extension of action dimension (PEAD) mechanism is proposed to optimize the convergence of RL algorithms.
The results demonstrate the PEAD method will enhance the data-efficiency and time-efficiency of RL algorithms as well as increase the stable reward.
- Score: 7.4642148614421995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is always the preferred embodiment to construct
the control strategy of complex tasks, like asymmetric assembly tasks. However,
the convergence speed of reinforcement learning severely restricts its
practical application. In this paper, the convergence is first accelerated by
combining RL and compliance control. Then a completely innovative progressive
extension of action dimension (PEAD) mechanism is proposed to optimize the
convergence of RL algorithms. The PEAD method is verified in DDPG and PPO. The
results demonstrate the PEAD method will enhance the data-efficiency and
time-efficiency of RL algorithms as well as increase the stable reward, which
provides more potential for the application of RL.
Related papers
- REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - Heuristic Algorithm-based Action Masking Reinforcement Learning (HAAM-RL) with Ensemble Inference Method [0.0]
This paper presents a novel reinforcement learning approach called HAAMRL (Heuristic ensemble-based Action Masking Reinforcement Learning)
The proposed approach exhibits superior performance and capability generalization, indicating superior effectiveness in optimizing complex manufacturing processes.
arXiv Detail & Related papers (2024-03-21T03:42:39Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Structure-Enhanced Deep Reinforcement Learning for Optimal Transmission
Scheduling [47.29474858956844]
We develop a structure-enhanced deep reinforcement learning framework for optimal scheduling of a multi-sensor remote estimation system.
In particular, we propose a structure-enhanced action selection method, which tends to select actions that obey the policy structure.
Our numerical results show that the proposed structure-enhanced DRL algorithms can save the training time by 50% and reduce the remote estimation MSE by 10% to 25%.
arXiv Detail & Related papers (2022-11-20T00:13:35Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - Controlled Deep Reinforcement Learning for Optimized Slice Placement [0.8459686722437155]
We present a hybrid ML-heuristic approach that we name "Heuristically Assisted Deep Reinforcement Learning (HA-DRL)"
The proposed approach leverages recent works on Deep Reinforcement Learning (DRL) for slice placement and Virtual Network Embedding (VNE)
The evaluation results show that the proposed HA-DRL algorithm can accelerate the learning of an efficient slice placement policy.
arXiv Detail & Related papers (2021-08-03T14:54:00Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.